120 research outputs found

    Inflammation and tissue repair markers distinguish the nodular sclerosis and mixed cellularity subtypes of classical Hodgkin's lymphoma

    Get PDF
    Background: Classical Hodgkin's lymphoma (cHL), although a malignant disease, has many features in common with an inflammatory condition. The aim of this study was to establish the molecular characteristics of the two most common cHL subtypes, nodular sclerosis (NS) and mixed cellularity (MC), based on molecular profiling and immunohistochemistry, with special reference to the inflammatory microenvironment. Methods: We analysed 44 gene expression profiles of cHL whole tumour tissues, 25 cases of NS and 19 cases of MC, using Affymetrix chip technology and immunohistochemistry. Results: In the NS subtype, 152 genes showed a significantly higher expression, including genes involved in extracellular matrix (ECM) remodelling and ECM deposition similar to wound healing. Among these were SPARC, CTSK and COLI. Immunohistochemistry revealed that the NS-related genes were mainly expressed by macrophages and fibroblasts. Fifty-three genes had a higher expression in the MC subtype, including several inflammation-related genes, such as C1Qα, C1Qβ and CXCL9. In MC tissues, the C1Q subunits were mainly expressed by infiltrating macrophages. Conclusions and interpretations: We suggest that the identified subtype-specific genes could reflect different phases of wound healing. Our study underlines the potential function of infiltrating macrophages in shaping the cHL tumour microenvironment

    The distinctive profile of risk factors of nasopharyngeal carcinoma in comparison with other head and neck cancer types

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nasopharyngeal carcinoma (NPC) and other head and neck cancer (HNCA) types show a great epidemiological variation in different regions of the world. NPC has multifactorial etiology and many interacting risk factors are involved in NPC development mainly Epstein Barr virus (EBV). There is a need to scrutinize the complicated network of risk factors affecting NPC and how far they are different from that of other HNCA types.</p> <p>Methods</p> <p>122 HNCA patients and 100 control subjects were studied in the region of the Middle East. Three types of HNCA were involved in our study, NPC, carcinoma of larynx (CL), and hypopharyngeal carcinoma (HPC). The risk factors studied were the level of EBV serum IgG and IgA antibodies measured by ELISA, age, sex, smoking, alcohol intake, histology, and family history of the disease.</p> <p>Results</p> <p>EBV serum level of IgG and IgA antibodies was higher in NPC than CL, HPC, and control groups (p < 0.01). NPC was associated with lymphoepithelioma (LE) tumors, males, regular alcohol intake, and regular smoking while CL and HPC were not (p < 0.05). CL and HPC were associated with SCC tumors (p < 0.05). Furthermore, NPC, unlike CL and HPC groups, was not affected by the positive family history of HNCA (p > 0.05). The serum levels of EBV IgG and IgA antibodies were higher in LE tumors, regular smokers, younger patients, and negative family history groups of NPC patients than SCC tumors, non-regular smokers, older patients and positive family history groups respectively (p < 0.05) while this was not found in the regular alcoholics (p > 0.05).</p> <p>Conclusion</p> <p>It was concluded that risk factors of NPC deviate much from that of other HNCA. EBV, smoking, alcohol intake, LE tumors, male patient, and age > 54 years were hot risk factors of NPC while SCC and positive family history of the disease were not. Earlier incidence, smoking, LE tumors, and negative family history of the disease in NPC patients were associated much clearly with EBV. It is proposed that determining the correct risk factors of NPC is vital in assigning the correct risk groups of NPC which helps the early detection and screening of NPC.</p

    The Four types of Tregs in malignant lymphomas

    Get PDF
    Regulatory T cells (Tregs) are a specialized subpopulation of CD4+ T cells, which act to suppress the activation of other immune cells. Tregs represent important modulators for the interaction between lymphomas and host microenvironment. Lymphomas are a group of serious and frequently fatal malignant diseases of lymphocytes. Recent studies revealed that some lymphoma T cells might adopt a Treg profile. Assessment of Treg phenotypes and genotypes in patients may offer prediction of outcome in many types of lymphomas including diffuse large B-cell lymphoma, follicular lymphoma, cutaneous T cell lymphoma, and Hodgkin's lymphoma. Based on characterized roles of Tregs in lymphomas, we can categorize the various roles into four groups: (a) suppressor Tregs; (b) malignant Tregs; (c) direct tumor-killing Tregs; and (d) incompetent Tregs. The classification into four groups is significant in predicting prognosis and designing Tregs-based immunotherapies for treating lymphomas. In patients with lymphomas where Tregs serve either as suppressor Tregs or malignant Tregs, anti-tumor cytotoxicity is suppressed thus decreased numbers of Tregs are associated with a good prognosis. In contrast, in patients with lymphomas where Tregs serve as tumor-killing Tregs and incompetent Tregs, anti-tumor cytotoxicity is enhanced or anti-autoimmune Tregs activities are weakened thus increased numbers of Tregs are associated with a good prognosis and reduced numbers of Tregs are associated with a poor prognosis. However, the mechanisms underlying the various roles of Tregs in patients with lymphomas remain unknown. Therefore, further research is needed in this regard as well as the utility of Tregs as prognostic factors and therapy strategies in different lymphomas

    Early Events Associated with Infection of Epstein-Barr Virus Infection of Primary B-Cells

    Get PDF
    Epstein Barr virus (EBV) is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology) was used to introduce an expression cassette of green fluorescent protein (GFP) by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6–7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6–12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection

    Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis

    Get PDF
    BACKGROUND: Invasive ductal and lobular carcinomas (IDC and ILC) are the most common histological types of breast cancer. Clinical follow-up data and metastatic patterns suggest that the development and progression of these tumors are different. The aim of our study was to identify gene expression profiles of IDC and ILC in relation to normal breast epithelial cells. METHODS: We examined 30 samples (normal ductal and lobular cells from 10 patients, IDC cells from 5 patients, ILC cells from 5 patients) microdissected from cryosections of ten mastectomy specimens from postmenopausal patients. Fifty nanograms of total RNA were amplified and labeled by PCR and in vitro transcription. Samples were analysed upon Affymetrix U133 Plus 2.0 Arrays. The expression of seven differentially expressed genes (CDH1, EMP1, DDR1, DVL1, KRT5, KRT6, KRT17) was verified by immunohistochemistry on tissue microarrays. Expression of ASPN mRNA was validated by in situ hybridization on frozen sections, and CTHRC1, ASPN and COL3A1 were tested by PCR. RESULTS: Using GCOS pairwise comparison algorithm and rank products we have identified 84 named genes common to ILC versus normal cell types, 74 named genes common to IDC versus normal cell types, 78 named genes differentially expressed between normal ductal and lobular cells, and 28 named genes between IDC and ILC. Genes distinguishing between IDC and ILC are involved in epithelial-mesenchymal transition, TGF-beta and Wnt signaling. These changes were present in both tumor types but appeared to be more prominent in ILC. Immunohistochemistry for several novel markers (EMP1, DVL1, DDR1) distinguished large sets of IDC from ILC. CONCLUSION: IDC and ILC can be differentiated both at the gene and protein levels. In this study we report two candidate genes, asporin (ASPN) and collagen triple helix repeat containing 1 (CTHRC1) which might be significant in breast carcinogenesis. Besides E-cadherin, the proteins validated on tissue microarrays (EMP1, DVL1, DDR1) may represent novel immunohistochemical markers helpful in distinguishing between IDC and ILC. Further studies with larger sets of patients are needed to verify the gene expression profiles of various histological types of breast cancer in order to determine molecular subclassifications, prognosis and the optimum treatment strategies

    Prior mucosal exposure to heterologous cells alters the pathogenesis of cell-associated mucosal feline immunodeficiency virus challenge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several lines of research suggest that exposure to cellular material can alter the susceptibility to infection by HIV-1. Because sexual contact often includes exposure to cellular material, we hypothesized that repeated mucosal exposure to heterologous cells would induce an immune response that would alter the susceptibility to mucosal infection. Using the feline immunodeficiency virus (FIV) model of HIV-1 mucosal transmission, the cervicovaginal mucosa was exposed once weekly for 12 weeks to 5,000 heterologous cells or media (control) and then cats were vaginally challenged with cell-associated or cell-free FIV.</p> <p>Results</p> <p>Exposure to heterologous cells decreased the percentage of lymphocytes in the mucosal and systemic lymph nodes (LN) expressing L-selectin as well as the percentage of CD4+ CD25+ T cells. These shifts were associated with enhanced ex-vivo proliferative responses to heterologous cells. Following mucosal challenge with cell-associated, but not cell-free, FIV, proviral burden was reduced by 64% in cats previously exposed to heterologous cells as compared to media exposed controls.</p> <p>Conclusions</p> <p>The pathogenesis and/or the threshold for mucosal infection by infected cells (but not cell-free virus) can be modulated by mucosal exposure to uninfected heterologous cells.</p

    Isolation and characterisation of mannosomes

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN031003 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Characterisation of epitopes of pan-IgG/anti-G3m(u) and anti-Fc monoclonal antibodies.

    Get PDF
    The characterisation of monoclonal antibodies (MAbs) and their epitopes is important prior to their application as molecular probes. In this study, Western blotting using IgG1 Fc and pFc' fragments was employed to screen seven MAbs before pepscan analysis to determine their reactivity to potentially linear epitopes. MAbs PNF69C, PNF110A, X1A11 and MAbs WC2, G7C, JD312, 1A1 detected epitopes within the C(H)3 and C(H)2 domains, respectively. However, only four MAbs showed pepscan profiles that highlighted likely target residues. In particular, MAbs PNF69C and PNF110A that have previously been characterised with pan-IgG and anti-G3m(u) specificity, detected the peptide motif 338-KAKGQPR-344 which was located within the N-terminal region of the C(H)3 domain. Furthermore the majority of residues were present in all four IgG subclasses. Consequently the peptide identified was consistent with the pan-IgG nature of these antibodies. By using PCImdad, a molecular display programme, this sequence was visualised as surface accessible, located in the C(H)2/C(H)3 inter-domain region and proximal to the residue arginine(435). It is speculated that this residue may be important for phenotypic expression of G3m(u) and specificity of these reagents. Pepscan analysis of MAbs G7C and JD312 (both pan-IgG) highlighted the core peptide sequence 290-KPREE-294, which was present in the C(H)2 domain and was common to all four IgG subclasses. PCImdad also showed this region to be highly accessible and was consistent with previous bioinformatic and autoimmune analysis of IgG. Overall these MAbs may serve as useful anti-IgG or anti-G3m(u) reagents and probes of immunoglobulin structure
    corecore