14 research outputs found

    TP53 abnormalities are underlying the poor outcome associated with chromothripsis in chronic lymphocytic leukemia patients with complex karyotype

    Get PDF
    Simple Summary Chromothripsis, a genomic event that generates massive chromosomal rearrangements, has been described in 1-3% of CLL patients and is associated with poor prognostic factors (e.g., TP53 abnormalities and genomic complexity). However, previous studies have not assessed its role in CLL patients with complex karyotypes. Herein, we aimed to describe the genetic characteristics of 33 CLL patients with high genomic complexity and chromothripsis. Moreover, we analyzed the clinical impact of chromothripsis, comparing these patients against a cohort of 129 patients with complex karyotypes not presenting this catastrophic event. Nine cases were also assessed via the novel cytogenomic methodology known as optical genome mapping. We confirmed that this phenomenon is heterogeneous and associated with a shorter time to first treatment. Nonetheless, our findings suggested that TP53 abnormalities, rather than chromothripsis itself, underlie the dismal outcome. Chromothripsis (cth) has been associated with a dismal outcome and poor prognosis factors in patients with chronic lymphocytic leukemia (CLL). Despite being correlated with high genome instability, previous studies have not assessed the role of cth in the context of genomic complexity. Herein, we analyzed a cohort of 33 CLL patients with cth and compared them against a cohort of 129 non-cth cases with complex karyotypes. Nine cth cases were analyzed using optical genome mapping (OGM). Patterns detected by genomic ..

    IGLV3-21R110 identifies an aggressive biological subtype of chronic lymphocytic leukemia with intermediate epigenetics

    Full text link
    B-cell receptor (BCR) signaling is crucial for chronic lymphocytic leukemia (CLL) biology. IGLV3-21-expressing B-cells may acquire a single point mutation (R110) that triggers autonomous BCR signaling conferring aggressive behavior. Epigenetic studies have defined three CLL subtypes based on methylation signatures reminiscent of naĂŻve-like (n-CLL), intermediate (i-CLL) and memory-like B-cells (m-CLL) with different biological features. i-CLL carry a borderline IGHV mutational load and a significant higher usage of IGHV3-21/IGLV3-21. To determine the clinical and biological features of IGLV3-21R110 CLL and its relationship to these epigenetic subtypes we have characterized the immunoglobulin gene of 584 CLL cases using whole-genome/exome and RNA sequencing. IGLV3-21R110 was detected in 6.5% of cases, being 30/79 (38%) i-CLL, 5/291 (1.7%) m-CLL and 1/189 (0.5%) n-CLL. All stereotype subset #2 cases carried IGLV3-21R110 while 62% of IGLV3-21R110 i-CLL had non-stereotyped B-cell receptor immunoglobulins. IGLV3-21R110 i-CLL had significantly higher number of SF3B1 and ATM mutations, and total number of driver alterations. Nonetheless, the R110 mutation was the sole alteration in one i-CLL and accompanied only by del(13q) in three. Although composite regarding IGHV mutational status, IGLV3-21R110 i-CLL transcriptomically resembled naĂŻve-like/unmutated IGHV CLL with a specific signature including WNT5A/B overexpression. Contrarily, i-CLL lacking the IGLV3-21R110 mirrored memory-like/mutated IGHV cases. IGLV3-21R110 i-CLL had a short time to first treatment and overall survival similar to n-CLL/unmutated IGHV cases whereas non-IGLV3-21R110 i-CLL had a good prognosis similar to memory-like/mutated IGHV. Altogether, IGLV3-21R110 defines a CLL subgroup with specific biological features and an unfavorable prognosis independent of the IGHV mutational status and epigenetic subtypes

    Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1 and ATM mutations in chronic lymphocytic leukemia

    No full text
    Genomic studies have revealed the complex clonal heterogeneity of chronic lymphocytic leukemia (CLL). The acquisition and selection of genomic aberrations may be critical to understanding the progression of this disease. In this study, we have extensively characterized the mutational status of TP53, SF3B1, BIRC3, NOTCH1, and ATM in 406 untreated CLL cases by ultra-deep next-generation sequencing, which detected subclonal mutations down to 0.3% allele frequency. Clonal dynamics were examined in longitudinal samples of 48 CLL patients. We identified a high proportion of subclonal mutations, isolated or associated with clonal aberrations. TP53 mutations were present in 10.6% of patients (6.4% clonal, 4.2% subclonal), ATM mutations in 11.1% (7.8% clonal, 1.3% subclonal, 2% germ line mutations considered pathogenic), SF3B1 mutations in 12.6% (7.4% clonal, 5.2% subclonal), NOTCH1 mutations in 21.8% (14.2% clonal, 7.6% subclonal), and BIRC3 mutations in 4.2% (2% clonal, 2.2% subclonal). ATM mutations, clonal SF3B1, and both clonal and subclonal NOTCH1 mutations predicted for shorter time to first treatment irrespective of the immunoglobulin heavy-chain variable-region gene (IGHV) mutational status. Clonal and subclonal TP53 and clonal NOTCH1 mutations predicted for shorter overall survival together with the IGHV mutational status. Clonal evolution in longitudinal samples mainly occurred in cases with mutations in the initial samples and was observed not only after chemotherapy but also in untreated patients. These findings suggest that the characterization of the subclonal architecture and its dynamics in the evolution of the disease may be relevant for the management of CLL patients

    Chromosome banding analysis and genomic microarrays are both useful but not equivalent methods for genomic complexity risk stratification in chronic lymphocytic leukemia patients

    No full text
    Genome complexity has been associated with poor outcome in patients with chronic lymphocytic leukemia (CLL). Previous cooperative studies established five abnormalities as the cut-off that best predicts an adverse evolution by chromosome banding analysis (CBA) and genomic microarrays (GM). However, data comparing risk stratification by both methods are scarce. Herein, we assessed a cohort of 340 untreated CLL patients highly enriched in cases with complex karyotype (CK) (46.5%) with parallel CBA and GM studies. Abnormalities found by both techniques were compared. Prognostic stratification in three risk groups based on genomic complexity (0-2, 3- 4 and Âż5 abnormalities) was also analyzed. No significant differences in the percentage of patients in each group were detected, but only a moderate agreement was observed between methods when focusing on individual cases (kappa=0.507; P<0.001). Discordant classification was obtained in 100 patients (29.4%), including 3% classified in opposite risk groups. Most discrepancies were technique-dependent and no greater correlation in the number of abnormalities was achieved when different filtering strategies were applied for GM. Nonetheless, both methods showed a similar concordance index for prediction of time to first treatment (TTFT) (CBA: 0.67 vs. GM: 0.65) and overall survival (CBA: 0.55 vs. GM: 0.57)

    Mutations in RAS-BRAF-MAPK-ERK pathway define a specific subgroup of patients with adverse clinical features and provide new therapeutic options in chronic lymphocytic leukemia

    No full text
    Mutations in genes of the RAS-BRAF-MAPK-ERK pathwayhave not been fully explored in patients with chronic lym-phocytic leukemia. We, therefore, analyzed the clinical andbiological characteristics of chronic lymphocytic leukemia patientswith mutations in this pathway and investigated thein vitroresponseof primary cells to BRAF and ERK inhibitors. Putative damaging muta-tions were found in 25 of 452 patients (5.5%). Among these, BRAFwas mutated in nine patients (2.0%), genes upstream of BRAF(KITLG,KIT, PTPN11, GNB1, KRASand NRAS) were mutated in 12 patients(2.6%), and genes downstream of BRAF(MAPK2K1, MAPK2K2, andMAPK1) were mutated in five patients (1.1%). The most frequentmutations were missense, subclonal and mutually exclusive. Patientswith these mutations more frequently had increased lactate dehydro-genase levels, high expression of ZAP-70, CD49d, CD38, trisomy 12and unmutated immunoglobulin heavy-chain variable region genesand had a worse 5-year time to first treatment (hazard ratio 1.8,P=0.025). Gene expression analysis showed upregulation of genes ofthe MAPK pathway in the group carrying RAS-BRAF-MAPK-ERKpathway mutations. The BRAF inhibitors vemurafenib and dabrafenibwere not able to inhibit phosphorylation of ERK, the downstreameffector of the pathway, in primary cells. In contrast, ulixertinib, apan-ERK inhibitor, decreased phospho-ERK levels. In conclusion,although larger series of patients are needed to corroborate these find-ings, our results suggest that the RAS-BRAF-MAPK-ERK pathway isone of the core cellular processes affected by novel mutations inchronic lymphocytic leukemia, is associated with adverse clinical fea-tures and could be pharmacologically inhibited

    TP53 abnormalities are underlying the poor outcome associated with chromothripsis in chronic lymphocytic leukemia patients with complex karyotype

    Get PDF
    Simple Summary Chromothripsis, a genomic event that generates massive chromosomal rearrangements, has been described in 1-3% of CLL patients and is associated with poor prognostic factors (e.g., TP53 abnormalities and genomic complexity). However, previous studies have not assessed its role in CLL patients with complex karyotypes. Herein, we aimed to describe the genetic characteristics of 33 CLL patients with high genomic complexity and chromothripsis. Moreover, we analyzed the clinical impact of chromothripsis, comparing these patients against a cohort of 129 patients with complex karyotypes not presenting this catastrophic event. Nine cases were also assessed via the novel cytogenomic methodology known as optical genome mapping. We confirmed that this phenomenon is heterogeneous and associated with a shorter time to first treatment. Nonetheless, our findings suggested that TP53 abnormalities, rather than chromothripsis itself, underlie the dismal outcome. Chromothripsis (cth) has been associated with a dismal outcome and poor prognosis factors in patients with chronic lymphocytic leukemia (CLL). Despite being correlated with high genome instability, previous studies have not assessed the role of cth in the context of genomic complexity. Herein, we analyzed a cohort of 33 CLL patients with cth and compared them against a cohort of 129 non-cth cases with complex karyotypes. Nine cth cases were analyzed using optical genome mapping (OGM). Patterns detected by genomic ..

    The proliferative history shapes the DNA methylome of B-cell tumors and predicts clinical outcome

    Get PDF
    We report a systematic analysis of the DNA methylation variability in 1,595 samples of normal cell subpopulations and 14 tumor subtypes spanning the entire human B-cell lineage. Differential methylation among tumor entities relates to differences in cellular origin and to de novo epigenetic alterations, which allowed us to build an accurate machine learning-based diagnostic algorithm. We identify extensive individual-specific methylation variability in silenced chromatin associated with the proliferative history of normal and neoplastic B cells. Mitotic activity generally leaves both hyper- and hypomethylation imprints, but some B-cell neoplasms preferentially gain or lose DNA methylation. We construct a DNA-methylation-based mitotic clock, called epiCMIT, whose lapse magnitude represents a strong independent prognostic variable in B-cell tumors and is associated with particular driver genetic alterations. Our findings reveal DNA methylation as a holistic tracer of B-cell tumor developmental history, with implications in differential diagnosis and the prediction of clinical outcome. Martin-Subero and colleagues analyze DNA methylation patterns in B-cell tumors and their normal cells of origin, and develop epiCMIT, a methylation-based mitotic clock with prognostic relevance

    International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia

    Get PDF
    Most patients with chronic lymphocytic leukemia (CLL) are diagnosed with early-stage disease and managed with active surveillance. The individual course of patients with early-stage CLL is heterogeneous, and their probability of needing treatment is hardly anticipated at diagnosis. We aimed at developing an international prognostic score to predict time to first treatment (TTFT) in patients with CLL with early, asymptomatic disease (International Prognostic Score for Early-stage CLL [IPS-E]). Individual patient data from 11 international cohorts of patients with early- stage CLL (n = 4933) were analyzed to build and validate the prognostic score. Three covariates were consistently and independently correlated with TTFT: unmutated immunoglobulin heavy variable gene (IGHV), absolute lymphocyte count higher than 15 × 109/L, and presence of palpable lymph nodes. The IPS-E was the sum of the covariates (1 point each), and separated low-risk (score 0), intermediate-risk (score 1), and high-risk (score 2-3) patients showing a distinct TTFT. The score accuracy was validated in 9 cohorts staged by the Binet system and 1 cohort staged by the Rai system. The C-index was 0.74 in the training series and 0.70 in the aggregate of validation series. By meta- analysis of the training and validation cohorts, the 5-year cumulative risk for treatment start was 8.4%, 28.4%, and 61.2% among low-risk, intermediate-risk, and high-risk patients, respectively. The IPS-E is a simple and robust prognostic model that predicts the likelihood of treatment requirement in patients with early-stage CLL. The IPS-E can be useful in clinical management and in the design of early intervention clinical trials

    Detection of early seeding of Richter transformation in chronic lymphocytic leukemia

    Get PDF
    Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)(high)-B cell receptor (BCR)(low)-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT.Single-cell genomic and transcriptomic analyses of longitudinal samples of patients with Richter syndrome reveal the presence and dynamics of clones driving transformation from chronic lymphocytic leukemia years before clinical manifestatio
    corecore