1,983 research outputs found

    Aerobic And Anaerobic Changes In Collegiate Male Runners Across A Cross-Country Season

    Get PDF
    The purpose of this study was to assess the physiological characteristics of trained NCAA Division III male runners across a competitive season of cross-country. Eight male distance runners (age 20.6±1.4 y) were administered a battery of aerobic and anaerobic laboratory tests at the beginning and end of an 8-10 week racing season. Aerobic testing included maximal oxygen uptake (VO2max), running economy (RE), ventilatory threshold (VT) and the onset of blood lactate accumulation (OBLA). Anaerobic testing consisted of the vertical jump (VJ) and the Wingate test. Final testing revealed anaerobic Wingate peak power significantly declined (11.8±1.1 to 10.7±1.0 W·kg-1) (P = 0.006), while no significant changes were seen in VJ or any aerobic parameters (P \u3e 0.05). These results indicate that a competitive cross-country season of training and racing diminished anaerobic peak power and failed to elicit quantifiable aerobic adaptations in previously trained collegiate distance runners

    Beyond backscattering: Optical neuroimaging by BRAD

    Full text link
    Optical coherence tomography (OCT) is a powerful technology for rapid volumetric imaging in biomedicine. The bright field imaging approach of conventional OCT systems is based on the detection of directly backscattered light, thereby waiving the wealth of information contained in the angular scattering distribution. Here we demonstrate that the unique features of few-mode fibers (FMF) enable simultaneous bright and dark field (BRAD) imaging for OCT. As backscattered light is picked up by the different modes of a FMF depending upon the angular scattering pattern, we obtain access to the directional scattering signatures of different tissues by decoupling illumination and detection paths. We exploit the distinct modal propagation properties of the FMF in concert with the long coherence lengths provided by modern wavelength-swept lasers to achieve multiplexing of the different modal responses into a combined OCT tomogram. We demonstrate BRAD sensing for distinguishing differently sized microparticles and showcase the performance of BRAD-OCT imaging with enhanced contrast for ex vivo tumorous tissue in glioblastoma and neuritic plaques in Alzheimer's disease

    New PV system concept : inductive power transfer for PV modules

    Get PDF
    The proposed new PV system concept is based on several AC modules that are connected in series using inductive power transfer. These modules include a cell matrix that is connected to a module integrated DC/AC inverter. The high frequency AC current flows through the primary side planar coil generating a magnetic flux. Outside of the PV module, there is a clamp including ferromagnetic material for the magnetic circuit that caries the magnetic flux to the secondary winding. The magnetic flux induces an AC current in the secondary winding, which is formed by the common cable. An AC/AC converter is placed at the end of the PV module strings to generate the 50 Hz and to connect the PV power plant to the electricity grid. This new PV system concept is a fundamentally new approach of the electricity transmission in the field of PV system technology. It is not restricted to the replacement or optimisation of an individual system component, but it requires the continuing development of the PV module construction and the contactless connection technology to the common cable. The proposed inductive power transfer per each PV module opens up a complete new field for the PV system technology

    Assisted Inflation from Geometric Tachyon

    Full text link
    We study the effect of rolling of N D3-branes in the vicinity of NS5-branes. We find out that this system coupled with the four dimensional gravity gives the slow roll assisted inflation of the scalar field theory. Once again this expectation is exactly similar to that of N-tachyon assisted inflation on unstable D-branes.Comment: 15 pages, 3 figures, minor modifications, to appear in JHE

    Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila

    Get PDF
    Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing

    A Review and Cluster Analysis of German Polarity Resources for Sentiment Analysis

    Get PDF

    Design and Testing of a Cryogenic Capillary Pumped Loop Flight Experiment

    Get PDF
    This paper details the flight configuration and pre-flight performance test results of the fifth generation cryogenic capillary pumped loop (CCPL-5). This device will fly on STS-95 in October 1998 as part of the CRYOTSU Flight Experiment. This flight represents the first in-space demonstration of a CCPL, a miniaturized two-phase fluid circulator for thermally linking cryogenic cooling sources to remote cryogenic components. CCPL-5 utilizes N2 as the working fluid and has a practical operating range of 75-110 K. Test results indicate that CCPL-5, which weighs about 200 grams, can transport over 10 W of cooling a distance of 0.25 m (or more) with less than a 5 K temperature drop

    Chasing Brane Inflation in String-Theory

    Full text link
    We investigate the embedding of brane anti-brane inflation into a concrete type IIB string theory compactification with all moduli fixed. Specifically, we are considering a D3-brane, whose position represents the inflaton Ï•\phi, in a warped conifold throat in the presence of supersymmetrically embedded D7-branes and an anti D3-brane localized at the tip of the warped conifold cone. After presenting the moduli stabilization analysis for a general D7-brane embedding, we concentrate on two explicit models, the Ouyang and the Kuperstein embeddings. We analyze whether the forces, induced by moduli stabilization and acting on the D3-brane, might cancel by fine-tuning such as to leave us with the original Coulomb attraction of the anti D3-brane as the driving force for inflation. For a large class of D7-brane embeddings we obtain a negative result. Cancelations are possible only for very small intervals of Ï•\phi around an inflection point but not globally. For the most part of its motion the inflaton then feels a steep, non slow-roll potential. We study the inflationary dynamics induced by this potential.Comment: 34 pages, 4 figures. Final version published in JCA

    Neutron Correlations in the Decay of the First Excited State of 11Li

    Full text link
    The decay of unbound excited 11Li was measured after being populated by a two-proton removal from a 13B beam at 71 MeV/nucleon. Decay energy spectra and Jacobi plots were obtained from measurements of the momentum vectors of the 9Li fragment and neutrons. A resonance at an excitation energy of ∼1.2 MeV was observed. The kinematics of the decay are equally well fit by a simple dineutron-like model or a phase-space model that includes final state interactions. A sequential decay model can be excluded
    • …
    corecore