994 research outputs found
Size Dependence of Investigations of Hot Electron Cooling Dynamincs in Metal/Adsorbates Nanoparticles
The size dependence of electron-phonon coupling rate has been investigated by femtosecond transient absorption spectroscopy for gold nanoparticles (NPs) wrapped in a shell of sulfate with diameter varying from 1.7 to 9.2 nm. Broad-band spectroscopy gives an overview of the complex dynamics of nonequilibrium electrons and permits the choice of an appropriate probe wavelength for studying the electron-phonon coupling dynamics. Ultrafast experiments were performed in the weak perturbation regime (less than one photon in average per nanoparticle), which allows the direct extraction of the hot electron cooling rates in order to compare different NPs sizes under the same conditions. Spectroscopic data reveals a decrease of hot electron energy loss rates with metal/adsorbates nanosystem sizes. Electron-phonon coupling time constants obtained for 9.2 nm NPs are similar to gold bulk materials (a. 1 ps) whereas an increase of hot electron cooling time up to 1.9 ps is observed for sizes of 1.7 nm. This is rationalized by the domination of surface effects over size (bulk) effects. The slow hot electron cooling is attributed to the adsorbates-induced long-lived nonthermal regime, which significantly reduces the electron-phonon coupling strength (average rate of phonon emission)
Collective flow in central Au-Au collisions at 150, 250 and 400 A MeV
Radial collective flow and thermalization are studied in gold on gold
collisions at 150, 250 and 400 A MeV bombarding energies with a
relativistically covariant formulation of a QMD code. We find that radial flow
and "thermal" energies calculated for all the charged fragments agree
reasonably with the experimental values. The experimental hardware filter at
small angles used in the FOPI experiments at higher energies selects mainly the
thermalized particles.Comment: 4 pages with 4 EPS figures included. Version accepted for publication
in Phys. Rev.
Applicability of perturbative QCD to decays
We develop perturbative QCD factorization theorem for the semileptonic heavy
baryon decay , whose form factors are
expressed as the convolutions of hard quark decay amplitudes with universal
and baryon wave functions. Large logarithmic
corrections are organized to all orders by the Sudakov resummation, which
renders perturbative expansions more reliable. It is observed that perturbative
QCD is applicable to decays for velocity transfer
greater than 1.2. Under requirement of heavy quark symmetry, we predict the
branching ratio , and determine
the and baryon wave functions.Comment: 12 pages in Latex file, 3 figures in postscript files, some results
are changed, but the conclusion is the sam
Threat of a lion population extinction in Waza National Park, North Cameroon.
Conservation Biology - ol
Social Structure of Lions (Panthera leo) Is Affected by Management in Pendjari Biosphere Reserve, Benin
Lion populations have undergone a severe decline in West Africa. As baseline for conservation management, we assessed the group structure of lions in the Pendjari Biosphere Reserve in Benin. This reserve, composed of one National Park and two Hunting Zones, is part of the WAP transboundary complex of protected areas. Overall mean group size was 2.661.7 individuals (n = 296), it was significantly higher in the National Park (2.761.7, n = 168) than in the Hunting Zones (2.261.5, n = 128). Overall adult sex ratio was even, but significantly biased towards females (0.67) in the National Park and towards males (1.67) in the Hunting Zones. Our results suggest that the Pendjari lion population is affected by perturbations, such as trophy hunting.Conservation Biolog
Sequential Decay Distortion of Goldhaber Model Widths for Spectator Fragments
Momentum widths of the primary fragments and observed final fragments have
been investigated within the framework of an Antisymmetrized Molecular Dynamics
transport model code (AMD-V) with a sequential decay afterburner (GEMINI). It
is found that the secondary evaporation effects cause the values of a reduced
momentum width, , derived from momentum widths of the final fragments
to be significantly less than those appropriate to the primary fragment but
close to those observed in many experiments. Therefore, a new interpretation
for experiemental momentum widths of projectile-like fragments is presented.Comment: 4 pages, 3 figs. Accepted for publication in Phys. Rev. C as a Rapid
Communicatio
Sequential Decay Distortion of Goldhaber Model Widths for Spectator Fragments
Momentum widths of the primary fragments and observed final fragments have
been investigated within the framework of an Antisymmetrized Molecular Dynamics
transport model code (AMD-V) with a sequential decay afterburner (GEMINI). It
is found that the secondary evaporation effects cause the values of a reduced
momentum width, , derived from momentum widths of the final fragments
to be significantly less than those appropriate to the primary fragment but
close to those observed in many experiments. Therefore, a new interpretation
for experiemental momentum widths of projectile-like fragments is presented.Comment: 4 pages, 3 figs. Accepted for publication in Phys. Rev. C as a Rapid
Communicatio
Analysis of Various Polarization Asymmetries In The Inclusive Decay In The Fourth-Generation Standard Model
In this study a systematical analysis of various polarization asymmetries in
inclusive b \rar s \ell^+ \ell^- decay in the standard model (SM) with four
generation of quarks is carried out. We found that the various asymmetries are
sensitive to the new mixing and quark masses for both of the and
channels. Sizeable deviations from the SM values are obtained. Hence, b \rar s
\ell^+ \ell^- decay is a valuable tool for searching physics beyond the SM,
especially in the indirect searches for the fourth-generation of quarks (.Comment: 19 Pages, 10 Figures, 3 Table
Phylogeographic Patterns in Africa and High Resolution Delineation of Genetic Clades in the Lion (Panthera leo)
Comparative phylogeography of African savannah mammals shows a congruent pattern in which populations in West/Central Africa are distinct from populations in East/Southern Africa. However, for the lion, all African populations are currently classified as a single subspecies (Panthera leo leo), while the only remaining population in Asia is considered to be distinct (Panthera leo persica). This distinction is disputed both by morphological and genetic data. In this study we introduce the lion as a model for African phylogeography. Analyses of mtDNA sequences reveal six supported clades and a strongly supported ancestral dichotomy with northern populations (West Africa, Central Africa, North Africa/Asia) on one branch, and southern populations (North East Africa, East/Southern Africa and South West Africa) on the other. We review taxonomies and phylogenies of other large savannah mammals, illustrating that similar clades are found in other species. The described phylogeographic pattern is considered in relation to large scale environmental changes in Africa over the past 300,000 years, attributable to climate. Refugial areas, predicted by climate envelope models, further confirm the observed pattern. We support the revision of current lion taxonomy, as recognition of a northern and a southern subspecies is more parsimonious with the evolutionary history of the lion.Netherlands Organization for Scientific Research (NWO) (project no. 820.01.002)
- …