81 research outputs found

    SGAC global satellite tracking initiative

    Get PDF
    The Global Satellite Tracking Initiative aims to support international students and young professionals to set up ground stations to download real-time data and images from satellites orbiting above their regions. The objective is to empower and build capabilities among space enthusiasts around the world and to promote the space sector through hands-on activities and real space technologies related to satellite communications. The Space Generation Advisory Council, together with SatNOGS as an integral part of the Libre Space Foundation, have been supporting the initiative to enhance the development of a global open source network of satellite ground stations. The initiative will be providing all the resources, hardware, and know-how that is needed to set up ground stations. A competition was launched by the end of 2021 to select teams of space enthusiasts and supply them with a kit and step-by-step instructions on how to build their own ground stations. By setting up ground stations in backyards, local universities, or maker clubs, teams are not only self-learning about telecommunications and satellite technologies, but they are creating a meaningful impact in their local communities by bringing the broad society closer to science, technology, engineering, mathematics and, in particular, space. The initiative also intends to support space missions while engaging local communities from different regions around the world in the space sector through appealing imagery and tools. After closing the Call for Applications in this pilot initiative, 10 winning teams were selected upon receiving almost 200 applications from more than 60 countries. The selected winners are based in the following emerging space faring nations: Benin, Bolivia, Egypt, Ethiopia, Nepal, Peru, Philippines, Rwanda, Vietnam, and Zimbabwe. They are being supplied with a basic Ground Station Kit and instructions on how to receive live images and data from different space missions, starting with the following frequency bands: - 137 megahertz: To receive images from National Oceanic & Atmospheric Administration satellites. - 144-146 megahertz: To receive images and data from the International Space Station. - 440 megahertz: To receive data from numerous scientific and educational small satellites. Those teams that manage to set up the basic ground station kits and conduct some outreach and educational activities will receive a more advanced system. This paper captures the process to be followed by the selected teams, from the unboxing of the hardware to the reception and processing of data from operational space missions

    Global Satellite Tracking Initiative: Setting Up Ground Stations to Track Satellites around the World

    Get PDF
    The Global Satellite Tracking Initiative aims to facilitate students and young professionals setting up ground stations to download real-time data and images from satellites flying above their regions. The objective is to empower and build capacities among space enthusiasts around the world and to promote the space sector through hands-on activities and real space technologies related to satellite communications. The Space Generation Advisory Council (SGAC) is an NGO that consists of a global network for students and young professionals interested in the space industry, with more than 15000 members globally from more than 150 countries. SGAC supports the United Nations Programme on Space Applications, with the vision of employing the creativity and vigor of youth in advancing humanity through the peaceful uses of space. SGAC organizes events worldwide, on a local, regional and international level, as well as several space-related projects within specific working groups. SatNOGS is an integral part of the Libre Space Foundation, supporting the development of a global open source network of satellite ground stations. The projects supported are led by enthusiasts around the world operating ground stations, which can be openly accessed via an online portal. Through the Global Satellite Tracking Initiative, SGAC and its partners will be providing all the resources, hardware, and know-how that is needed to set up several ground stations. A competition has been launched to select teams and individual space enthusiasts that will then be supplied with a kit and step-by-step instructions on how to build their own ground stations around the world.

    Congo River sand and the equatorial quartz factory

    Get PDF
    A never solved problem in sedimentary petrology is the origin of sandstone consisting exclusively of quartz and most durable heavy minerals. The Congo River offers an excellent test case to investigate under which tectonic, geomorphological, climatic, and geochemical conditions pure quartzose sand is generated today. In both upper and lowermost parts of the catchment, tributaries contain significant amounts of feldspars, rock fragments, or moderately stable heavy minerals pointing at the central basin as the main location of the "quartz factory". In Congo sand, quartz is enriched relatively to all other minerals including zircon, as indicated by Si/Zr ratios much higher than in the upper continental crust. Selective elimination of old zircons that accumulated radiation damage through time is suggested by low percentages of grains yielding Archean U-Pb ages despite the basin being surrounded by Archean cratonic blocks. Intense weathering is documented by the lack of carbonate grains in sand and by dominant kaolinite and geochemical signatures in mud. In sand, composed almost entirely of SiO2, the weathering effect is masked by massive addition of quartz grains recycled during multiple events of basin inversion since the Proterozoic. Changes in mineralogical, geochemical, and geochronological signatures across Bas-Congo concur to suggest that approximately 10% of the sand supplied to the Atlantic Ocean is generated by rapid fluvial incision into the recently uplifted Atlantic Rise. The Congo River connects with a huge canyon similar to 30 km upstream of the mouth, and pure quartzose sand is thus funnelled directly toward the deep-sea to feed a huge turbidite fan. Offshore sediments on both sides of the canyon are not derived from the Congo River. They reflect mixed provenance, including illite-rich dust wind-blown from the arid Sahel and augite, hypersthene, and smectite ejected from volcanic centres probably situated along the Cameroon Line in the north. Because mixing of detritus from diverse sources and supply of polycyclic grains almost invariably occurs in the terminal lowland tract of a sediment-routing-system, no ancient sandstone can be safely considered as entirely first-cycle. Moreover, the abundance of pure quartzarenite in the rock record can hardly be explained by chemical weathering or physical recycling alone. The final cleansing of minerals other than quartz, zircon, tourmaline, and rutile requires one or more cycles of chemical dissolution during diagenesis, which operates at higher temperatures and over longer periods than weathering at the Earth's surface

    Contributions of U-Th-Pb dating on the diagenesis and sediment sources of the Lower Group (BI) of the Mbuji-Mayi Supergroup (Democratic Republic of Congo)

    Full text link
    In this paper, we present new age constraints for the lower part of the Meso-Neoproterozoic sedimentary Mbuji-Mayi Supergroup (Democratic Republic of Congo, DRC). This Supergroup preserves a large diversity of organic-walled microfossils, evidencing the diversification of early eukaryotes for the first time in Central Africa. We use different methods such as in situ U-Pb geochronology by LA-ICP-MS and U-Th-Pb chemical datings by Electron Microprobe on diagenetic and detrital minerals such as xenotimes, monazites and zircons. We attempt to better constrain the provenance of the Mbuji-Mayi sediments and the minimum age of the Mbuji-Mayi Supergroup to constrain the age of the microfossils. Results with LA-ICP-MS and EMP provide new ages between 1030 and 1065 Ma for the diagenesis of the lower part of the sedimentary sequence. These results are consistent with data on biostratigraphy supporting the occurrence of worldwide changes at the Mesoproterozoic/Neoproterozoic boundary
    corecore