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A B S T R A C T

A never solved problem in sedimentary petrology is the origin of sandstone consisting exclusively of quartz and
most durable heavy minerals. The Congo River offers an excellent test case to investigate under which tectonic,
geomorphological, climatic, and geochemical conditions pure quartzose sand is generated today. In both upper
and lowermost parts of the catchment, tributaries contain significant amounts of feldspars, rock fragments, or
moderately stable heavy minerals pointing at the central basin as the main location of the “quartz factory”. In
Congo sand, quartz is enriched relatively to all other minerals including zircon, as indicated by Si/Zr ratios much
higher than in the upper continental crust. Selective elimination of old zircons that accumulated radiation da-
mage through time is suggested by low percentages of grains yielding Archean UePb ages despite the basin
being surrounded by Archean cratonic blocks. Intense weathering is documented by the lack of carbonate grains
in sand and by dominant kaolinite and geochemical signatures in mud. In sand, composed almost entirely of
SiO2, the weathering effect is masked by massive addition of quartz grains recycled during multiple events of
basin inversion since the Proterozoic.
Changes in mineralogical, geochemical, and geochronological signatures across Bas-Congo concur to suggest

that approximately 10% of the sand supplied to the Atlantic Ocean is generated by rapid fluvial incision into the
recently uplifted Atlantic Rise. The Congo River connects with a huge canyon ~30 km upstream of the mouth,
and pure quartzose sand is thus funnelled directly toward the deep-sea to feed a huge turbidite fan. Offshore
sediments on both sides of the canyon are not derived from the Congo River. They reflect mixed provenance,
including illite-rich dust wind-blown from the arid Sahel and augite, hypersthene, and smectite ejected from
volcanic centres probably situated along the Cameroon Line in the north.
Because mixing of detritus from diverse sources and supply of polycyclic grains almost invariably occurs in

the terminal lowland tract of a sediment-routing-system, no ancient sandstone can be safely considered as en-
tirely first-cycle. Moreover, the abundance of pure quartzarenite in the rock record can hardly be explained by
chemical weathering or physical recycling alone. The final cleansing of minerals other than quartz, zircon,
tourmaline, and rutile requires one or more cycles of chemical dissolution during diagenesis, which operates at
higher temperatures and over longer periods than weathering at the Earth's surface.
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“… a mighty big river resembling an immense snake uncoiled, with its
head in the sea, its body at rest curving afar over a vast country, and its
tail lost in the depths of the land.”

Joseph Conrad – Heart of Darkness

1. Introduction

The large-scale production of pure quartzose sand stands as a long-
debated, particularly thorny issue in sedimentary petrology (Krynine,
1941; Pettijohn et al., 1972: pp. 223–227; Suttner et al., 1981;
Chandler, 1988; Johnsson et al., 1988; Dott, 2003; Mehring and
McBride, 2007; Basu, 2017). Can prolonged weathering promoted by
extreme hot-humid climatic conditions or in situ leaching in soils by
infiltrating rainwater rich in humic acids be efficient enough to elim-
inate all but the few most durable species of detrital minerals (van
Loon, 2009)? Or should the generation of residual sand composed only
of quartz, zircon, tourmaline, and rutile necessarily imply the effect of
chemical dissolution accumulated through more than a single sedi-
mentary cycle, considering that the time and temperature available for
chemical reactions are much longer and higher during burial diagenesis
than at the Earth's surface (McBride, 1985)? If entirely first-cycle pure
quartzose sand does exist, then what climatic (e.g., temperature, pre-
cipitation), geomorphological (e.g., topography, vegetation, soil pro-
cesses, groundwater level), and chemical conditions (e.g., type and
concentration of dissolved ions in reacting fluids, pH, Eh) are required
for its generation (Basu, 1985; Johnsson, 1993)? To shed new light on
these challenging questions we moved to hot and hyper-humid Congo
in cratonic equatorial Africa, a particularly well suited environmental
setting for a “quartz factory”.
The Congo is the largest river on Earth that carries pure quartzose

sand to the world's oceans (Fig. 1). Other big rivers supplying pure

quartzose sand to the Atlantic Ocean include the Paranà and Uruguay in
South America, whereas Orinoco sand is quartzose with a few sedi-
mentary and low-rank metasedimentary lithics derived from the
northern Andes, and Amazon sand is feldspatho-litho-quartzose (Fig. 6
in Garzanti, 2019). Other large African rivers do carry pure quartzose
sand but only in the continental interiors, including the White Nile, the
Zambezi upstream of Victoria Falls, and the Okavango draining into the
Kalahari Desert of central Botswana (Garzanti et al., 2014a, 2015).

2. The Congo River

The huge catchment of the 4700 km-long Congo River (basin area
3.7 106 km2, 12% of Africa, ~2.2% of the Earth's land surface) is the
second-longest in Africa and ninth-longest in the world. The drainage
basin, straddling the Equator from ~13°S to ~9°N, is delimited by the
late Mesozoic Central African rift system to the north, by the mid-
Cenozoic East African rift system to the east, and by the Kalahari
Plateau to the south (Leturmy et al., 2003). The two major tributaries
are the Kasai (Cassai) from the south and the Ubangui (Oubangui,
Ubangi) from the north. The major headwater branch is the Lualaba,
and the longest one the Chambeshi. The Lukuga River is the outlet of
Lake Tanganyika, whereas major rivers flowing into Lake Tanganyika
include the Rusizi in Burundi and the Malagarasi in Tanzania (Fig. 2).
The central part of the basin (cuvette centrale), a wide depression

accounting for ~30% of the entire catchment, is characterized by
equatorial climate with 2.0–2.3m of annual rainfall (Alsdorf et al.,
2016). In these lowlands, covered by loose clay and sand, the Congo
River has very low slope and flow velocity (0.3–0.6m/s). A perma-
nently or temporarily flooded rain forest, extending toward rift high-
lands in the east where precipitation reaches 2.5 m/a, has been sus-
tained since it replaced savannahs after the dry time of the Last Glacial
Maximum (Runge, 2007). Transition to humid tropical climate with

Fig. 1. The Congo River in Bas-Congo (now Kongo Central province). (A) Location map with sampling sites (DEM files sourced from USGS www.usgs.gov/foia/index.
htm). The steep juvenile tract of the river between Kinshasa and Matadi includes the Inga Falls, the largest rapids of the world where water rushes at 14m/s and
waves reach 12m (Figs. 3 and 4). (B) Rainfall data after Masih et al. (2014). (C) Climate classification after Kottek et al. (2006): A= equatorial (f= fully humid;
m=monsoonal; w=winter dry); B= arid (W=desert; S= steppe; h= hot; k= cold); C=warm temperate (f= fully humid; s= summer dry; w=winter dry;
a=hot summer; b=warm summer).
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annual precipitation decreasing to 1.4–1.8m occurs both northwards
and southwards, where shield plateaus are covered by shrub and tree
savannah. The northern divide of the basin drained by Ubangui tribu-
taries is semiarid, whereas in the south alternating wet and dry seasons
with notably lower temperatures characterize the Angolan and Shaba
highlands, covered by open savannah woodland or dry deciduous forest
interspersed with grassland and wetland.
The northward direction of major tributaries sourced in Angolan

and Shaba highlands and provenance analysis of Jurassic-Cretaceous
sandstones has led to think that the paleo-Congo river originally flowed
from south to north (Agyemang et al., 2016), possibly as far as Lake
Chad (Runge, 2007: p. 302). Alternative hypotheses are that in the Late
Cretaceous to Paleogene the cuvette centrale drained eastwards entering
the Indian Ocean at the present Rufiji Delta in Tanzania (Stankiewicz
and de Wit, 2006), or westwards entering the Atlantic Ocean at the
present Ogooué Delta in Gabon (Karner and Driscoll, 1999: p. 29). A
major drainage change in Oligo-Miocene times was induced by south-
ward propagation of the East African rift and associated rift-shoulder

uplift and subsidence of the cuvette centrale (Guillocheau et al., 2018).
There is no consensus whether the youthful terminal tract of the river
resulted from capture by a short headward-eroding coastal stream
(Goudie, 2005) or was antecedent relative to recent uplift (Flügel et al.,
2015), and whether the Congo River outlet has remained fixed since the
Late Cretaceous (Anka et al., 2010; Linol et al., 2015a) or was estab-
lished in the Oligocene (Karner and Driscoll, 1999; Savoye et al., 2000),
middle/late Miocene (Uenzelmann-Neben, 1998), or only very recently
in the early Pleistocene (Peters and O'Brien, 2001; Giresse, 2005).

2.1. The lower course, the canyon, and the fan

Just upstream of Brazzaville and Kinshasa, the capitals of the
Republic of Congo and of the Democratic Republic of Congo, lies the
Malebo (Stanley) Pool, where the river widens to 20–25 km, it is only
3–10m deep, and sand bars emerge during low flow. Between Kinshasa
and the Atlantic Ocean, the channel drops by ~270m over a distance of
~500 km. In this steep juvenile tract known as Livingstone Falls

Fig. 2. Geological map of the Congo catchment and adjacent regions (CGMW-BRGM, 2016). Location of coastal and offshore samples, as well as river samples
collected in coastal areas and outside of Fig. 1 are shown. Congo Canyon after Wenau et al. (2015).
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(Fig. 3), channel depth reaches ≥220m making this fluvial section the
deepest on Earth (Oberg et al., 2009). About 40 km upstream of Matadi
are located the Inga Falls, the largest rapids in the world, where water
rushes at 14m/s, waves are up to 12m in height, and channel steepness
reaches extreme values (Fig. 4). Two large hydropower plants are op-
erative at Inga (dam closure in 1972 and 1982), where the Great Inga
project, if completed, will represent the largest hydropower plant on
Earth with an energy-generation potential twice as that of the Three
Gorges Dam on the Yangtze River in China (Showers, 2009).
In the 134 km-long navigable stretch from Matadi to the mouth, the

river is at first narrow, characterized by huge whirlpools, and deeply
incised for up to 250m into exposed quartzite. It next widens to 19 km
with very large active sand bars, to finally become an estuary with
average tidal range of 1.4m downstream of Boma (Bultot, 1971).

Some 30 km upstream of the mouth, the river channel deepens into
a submarine valley directly connected with a huge canyon deeply en-
trenched into the continental shelf and continuing for ~760 km
downslope of the coast to water depths of ~5000m b.s.l. As a con-
sequence, the Congo River has no subaerial delta and virtually its entire
bedload reaching the sea is ultimately transferred directly by turbidity
currents to the huge Congo Fan, as documented by repeated cable
breaks in the canyon coinciding with periods of peak water and sedi-
ment discharge (Heezen et al., 1964; Babonneau et al., 2010; Anka
et al., 2009). Frequent and powerful mud-rich turbidity flows, possibly
triggered by slope instability, are prolonged over several days to a full
week. Active turbiditic sedimentation during the current interglacial
highstand is a peculiar feature that distinguishes the Congo from the
other major rivers on Earth (Babonneau et al., 2002). Sediment

Fig. 3. Longitudinal profile of the trunk-river in Bas-Congo (modified after fig. 14.3 in Runge, 2007; lithostratigraphy after Baudet et al., 2018b). River samples are
indicated, together with the dominant heavy minerals in each tributary sand (Ep= epidote; Ky= kyanite; ZTR= zircon + tourmaline + rutile).

Fig. 4. Topographic relief and morphometry of the
Congo River in Bas-Congo (elevation in m a.s.l.).
Channel-profile analysis emphasizes the extreme
steepness values reached in the Inga Falls (ksn up to
800 at the bend), a most prominent knickpoint as-
sociated with recent uplift of the Atlantic Rise and
sharp lithological contrast between the Lufu micro-
granite-gneiss massif (Kianga facies of Tack, 1973)
and its Inga metavolcanic wallrocks (Duizi-Inga
series of Tack, 1973).
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transport is of the same order of magnitude as the discharge of the
Congo River, and involves an estimated ~2% of the total terrestrial
organic carbon buried annually in the world's oceans (Azpiroz-Zabala
et al., 2017).
The Congo canyon, lying 480m b.s.l. at the river mouth and

~1000m b.s.l. at the shelf edge, cuts across salt diapirs and continues
into a meandering channel over a cumulative length of 1135 km from
the estuary to the fan lobes (Savoye et al., 2000). Congo turbidites are
thus traced for> 1000 km, whereas during hypopycnal flows the se-
diment-laden surface plume can be followed for 20 km and the fresh-
water plume to as far as 800 km offshore (Eisma and Kalf, 1984; Braga
et al., 2004; Denamiel et al., 2013).
The deep trench impressively carved by the Congo River across the

entire width of the western African continental margin, from the re-
cently uplifted Atlantic Rise in Bas-Congo to the huge deep-sea canyon
offshore, is a unique geomorphic feature, the origin, causal mechan-
isms, and evolution of which are still poorly understood (Ferry et al.,
2004; Anka et al., 2010). Diverse and complexly interplaying factors
controlling the balance between erosion and sedimentation have been
called upon, including tectonic activity and climatic, eustatic, and
oceanographic changes (Séranne and Anka, 2005). Lavier et al. (2001)
pointed out that global cooling at the Eocene/Oligocene transition and
related onset of Antarctic intermediate-depth oceanic currents, coupled
with Miocene epeirogenic uplift of Africa, may have triggered sub-
marine erosion and mass wasting. McGinnis et al. (1993) documented
truncation of seismic reflectors associated with this event, indicating
prominent deep-sea erosion, slope retreat, and canyon cutting across
the outer shelf and slope, and emphasized the role of erosional un-
loading to promote flexural rebound and uplift of the continental
margin. Lucazeau et al. (2003) related instability of drainage and mi-
gration of depocenters from the Ogooué and Kwanza Rivers to the
Congo Fan in the Oligocene to regional flexural rebound and Miocene
uplift of the continental margin by ≤450m. Cramez and Jackson
(2000) suggested that fault control on the Congo Canyon may have

been exerted by Neogene inversion and reactivation of a sub-salt half-
graben. Séranne and Anka (2005) related increased erosion and de-
velopment of the huge Congo Fan to northward plate motion whereby
the Congo catchment, previously characterized by arid tropical condi-
tions, reached the wet equatorial belt in the Neogene. A positive feed-
back of fluvial incision and canyon cutting followed by erosional un-
loading, possibly initiated with “dynamic” uplift of Africa and climate
change in the Oligocene, may have culminated with capture of the vast
endorheic Congo catchment by a headward-eroding coastal stream.
Submarine erosion, related either to gravity flows triggered by sedi-
ment overload and failure at the head and flanks of the canyon or to
hyperpycnal currents generated by fluvial floods, continued throughout
the Neogene. Enhanced further during Pleistocene glacio-eustatic low-
stands, it has remained active until today (Shepard and Emery, 1973;
Savoye et al., 2009; Dennielou et al., 2017).

2.2. Hydrology and sediment load

The Congo River is second on Earth only to the Amazon in drainage
area and water discharge (minimum 23,000m3/s, mean 41,000m3/s,
maximum 75,500m3/s; Laraque et al., 2009, 2013). Two flow regimes
exist in the huge catchment. The Ubangui and other tributaries draining
sub-humid regions north of the Equator reach maximum discharge
between September and November, and minimum in February to April.
In contrast, southern tributaries reach maximum discharge at different
times between March and May, and minimum in September–November.
As a consequence, the trunk river records peak discharge around De-
cember, after receiving the rainy-season runoff from the Ubangui, and a
smaller peak fed from southern branches around May. Discharge
variability through the year is reduced by regularly high rainfall in the
central Congo basin. Because of scarce industrial activities and huge
discharge, river waters are relatively unpolluted.
The Congo River is estimated to carry ~30 106 t/a suspended load

(~8 106 t very fine sand,≥ 20 106 t silt and clay,≤ 3 106 t organic
matter), a figure which is only a half of total dissolved material (58
106 t, ~27% of which derived from organic matter; Laraque et al.,
1995, 2009). Sediment yield is thus ≤10 t km−2 a−1. Suspended load
has low concentration (average 25mg/l; Laraque et al., 2013) and in-
cludes clay (~50% kaolinite, ~25% illite, ≤10% each smectite,
chlorite, and mixed layers), mostly fine to medium silt, organic matter,
amorphous silica, phytoliths, and Fe-oxy-hydroxides (Eisma et al.,
1978). The dissolved load largely consists of silica and bicarbonate,
largely supplied by the Ubangui River which drains Precambrian
limestone and carries ~80% kaolinite, ~20% illite, and little smectite
(Delaune et al., 1995; Laraque and Olivry, 1996).

2.3. Geology and geomorphology

The oval-shaped cuvette centrale, ~1000 km in diameter and once
possibly occupied by a huge lake (Peters and O'Brien, 2001), lies at
elevations between 300 and 500m a.s.l. surrounded by hilly reliefs
formed by deeply-weathered Precambrian to Mesozoic rocks. One of the
largest intracratonic basins on Earth, the cuvette centrale is underlain by
crystalline basement of the Congo craton, consisting of several Archean
blocks welded during the Paleoproterozoic Eburnean orogeny (Fig. 5;
Cahen et al., 1984; De Waele et al., 2008; de Wit and Linol, 2015). The
overlying strata comprise Neoproterozoic schist, quartzite, evaporite,
and carbonate locally folded during the Pan-African orogeny and un-
conformably overlain by ~1 km-thick, tabular, feldspar-rich Paleozoic
redbeds (Delpomdor and Préat, 2015). Permo-Carboniferous deposits
including tillite, sandstone, and coal-bearing lacustrine sediment
(~1.5 km-thick Karoo Supergroup; Linol et al., 2015b) are overlain by
~1 km of quartz-rich sandstone, silt, bituminous shale, and lacustrine
limestone deposited under variable climatic conditions during the
Mesozoic and Cenozoic (Linol et al., 2015c; Roberts et al., 2015;
Agyemang et al., 2016). A major hiatus encompasses part of the Triassic

Fig. 5. Schematic map of central Africa (modified after Fig. 2.5 in de Wit and
Linol, 2015) showing diverse Archean cratonic blocks (purple), Paleoproter-
ozoic (Eburnean) fold-belts (green), domains affected by Mesoproterozic in-
trusions (orange), and Pan African fold-belts (light brown). Ages of Pre-
cambrian basement units surrounding the central Congo basin are indicated.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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and the Early Jurassic (Kadima et al., 2011).
In the north, the Congo craton exposed along the Asande Rise is

drained by the Ubangui River and its Uele, Mbomu, and Kotto branches
(Fig. 2). It includes a Mesoarchean amphibole-gneiss complex
(2.9–3.2 Ga) and granitoid intrusions (2.84–3.2Ga) overlain by Proter-
ozoic marble and quartzite (Cahen et al., 1984; CGMW-BRGM, 2016).
In the east, recently uplifted highlands along the western branch of the
East African rift reach maximum elevations of 3308m, 4507m, and
5110m a.s.l. in the Mitumba Mountains cored by Neoproterozoic al-
kaline granite, in volcanoes of the Neogene potassic Virunga province,
and in the Paleoproterozoic Rwenzori crystalline massif, respectively.

In the south, basement rocks of the Kasai shield reach an elevation of
1800m a.s.l. in the Angola and Shaba highlands. They consist of Me-
soarchean to Paleoproterozoic granite, gneiss, migmatite, and gabbro
dated between 2.0 and 3.4 Ga, overlain by ≥6 km-thick metasedi-
mentary rocks and metalavas dated between 1155 and>1400Ma
(Cahen et al., 1984).
In Bas-Congo, from the Malebo Pool to the Atlantic Ocean, the

Congo River cuts across the West Congo belt, a recently rejuvenated,
eastward-verging Neoproterozoic (Pan-African) orogen extending par-
allel to the coast between northern Angola and Gabon for ~1300 km in
length and 150–375 km in width (Fig. 6A; Frimmel et al., 2006;

Fig. 6. The West Congo belt in Bas-Congo (after Tack et al., 2001; updated lithostratigraphy after Baudet et al., 2018b). (A) Regional geological map (the white
rectangle outlines the area enlarged in C; white circles indicate sampling sites). (B) Lithostratigraphic framework. (C) Geological map of the Matadi region (after
Tack, 1975).
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Pedrosa-Soares et al., 2008; Affaton et al., 2016). The crystalline
basement, represented by gneiss, migmatite, and amphibolite deformed
at ~2.1 Ga during the Eburnean (Kimezian) orogeny, is thrust eastward
onto Neoproterozoic tectono-stratigraphic units displaying eastward-
decreasing metamorphic grade from amphibolite facies to un-
metamorphosed strata in the foreland. The contact between the Kime-
zian basement and the overlying metasedimentary rocks of the Nzadi
(formerly Zadinian) Group, including the upper Mesoproterozoic Ma-
tadi quartzite and Yelala metaconglomerate (Baudet et al., 2018a), is
marked by mylonitic rocks from diverse protoliths originally described
as the “Palabala Formation” (Tack, 1975; Franssen and André, 1988).
Igneous rocks exposed near Matadi include the Mpozo syenomonzonite
of Eburnean age (1948 ± 10Ma) and the Noqui peralkaline granite,
intruded into Matadi quartzite at ~1 Ga (Fig. 6C; De Grave et al., 2018).
The 3–4 km-thick, lower Tonian Seke-Banza Group comprises the
Gangila metabasalt and the Inga metarhyolite, which includes felsic
volcanic and volcaniclastic rocks locally intercalated with quartzite and
quartz-phyllite (Fig. 6B; Baudet et al., 2018b). The Seke-Banza (for-
merly Mayumbian) Group, dated at 920 ± 8Ma at the base and at
912 ± 7Ma at the top, was intruded by monzogranite to syenogranite
and alkali-feldspar granite also dated at ~920Ma. The Nzadi and Seke-
Banza Groups may represent a continental rift sequence with initial
peralkaline magmatism followed by extensive bimodal magmatism
(Tack et al., 2001).
The Seke–Banza Group is overlain by the Neoproterozoic Cataractes

Group, which includes ~4 km-thick siliciclastic, diamictite, and car-
bonate strata deposited before the climax of the Pan-African orogeny
(Cryogenian Sansikwa and Haut-Shiloango Subgroups, and Ediacaran
Lukala Subgroup), and the ~1 km-thick Mpioka Subgroup deposited at
late Ediacaran times in the foreland of the Pan-African orogen (Cailteux
et al., 2015). The Sansikwa Subgroup consists of ~1650m-thick con-
tinental siliciclastic sediments overlain by the ~400m-thick Lower
Diamictite Formation, which might be correlated globally with the
Sturtian glaciation (717–660Ma; Hoffman and Li, 2009; Rooney et al.,
2015). The occurrence of glacigenic features is however disputed, and
the occurrence of interbedded tholeiitic basalt has suggested episodic
extensional activity associated with the breakup of Columbia
(Archibald et al., 2018). Deposition is constrained to have taken place
around 694 ± 4Ma by UePb baddeleyite dating of a doleritic feeder
dyke (Straathof, 2011) and before 678 ± 4Ma by detrital-zircon
chronostratigraphy (Archibald et al., 2018). The overlying Haut-Shi-
loango Subgroup, consisting of ~1 km-thick siliciclastic sediments and
subordinate carbonate rocks at the top, is capped by the 150–200m-
thick Upper Diamictite Formation, which may be correlated globally
with the Marinoan glaciation (639–635Ma; Macdonald et al., 2010;
Prave et al., 2016) although the occurrence of glacigenic features is
disputed. The ~1 km-thick Lukala (formerly Schisto-Calcaire) Subgroup
includes shelfal marly, oolitic, and stromatolitic limestone and dolos-
tone (Delpomdor et al., 2015). The ~1 km-thick Mpioka Subgroup si-
liciclastic rocks are considered as the molasse of the Pan-African
orogen, themselves involved in orogeny at ~566Ma (Frimmel et al.,
2006). The deformed rocks of the West Congolian Supergroup are un-
conformably overlain by the> 900m-thick redbeds of the Paleozoic
Inkisi Group.
After prolonged phases of erosion and peneplanation (Veatch,

1935), the rapid uplift responsible for the markedly juvenile character
of the lower course of the Congo River began in the late Paleogene,
when the cuvette centrale still lay close to sea level, and accelerated
toward the close of the Miocene (Guillocheau et al., 2015). Offshore,
Eocene deep-water carbonate sedimentation was interrupted by sub-
marine erosion of ≤1 km of sediment from the shelf break and upper
slope, followed by a drastic increase in sediment supply leading to
progradation and shallowing (Lavier et al., 2001). Turbidite sedi-
mentation started at early Oligocene times, followed by incision of the
Congo canyon and basinward progradation of the fan onto the abyssal

plain while deposition on the slope remained dominated by hemi-
pelagic mud (Anka et al., 2009).

3. Sampling and analytical methods

Between June 2015 and October 2016, we collected 14 sand sam-
ples along the Congo River and its lower course tributaries in Bas-
Congo, from just upstream of the Malebo (Stanley) Pool to the estuary,
and 2 estuary channel and beach sands at Soyo in Angola. Although the
central part of the huge basin could not be accessed, 16 additional
samples were collected in previous and subsequent years on the Congo
River at Brazzaville, in upstream parts of the catchment on its Ubangui
tributary at Bangui, in the Ruizi and Malagarazi catchments in Burundi
and Tanzania, and along the Atlantic coast from northern Angola to the
Republic of Congo and Gabon. Moreover, we analysed 5 offshore
samples from the adjacent shelf and Congo Fan, collected within 1m
below the seafloor at water depths between −30 and−3100m b.s.l.
during Meteor expeditions M6/6, M20/2, and M76/3a and retrieved
from the MARUM repository in Bremen (Wefer et al., 1988; Schulz
et al., 1992; Spiess and Shipboard Party, 2012). This set of 37 samples
allowed us to investigate the compositional signatures of sediment
produced in subequatorial Africa and the relative importance of
weathering and recycling in the generation of pure quartzose sand. Full
information on sampling sites is provided in Appendix Table A1 and
Google Earth™ file Congo.kmz.

3.1. Petrography and heavy minerals

A quartered fraction of each sample was impregnated with Araldite,
cut into a standard thin section stained with alizarine red to distinguish
dolomite and calcite, and analysed by counting between 400 and 500
points by the Gazzi-Dickinson method (Ingersoll et al., 1984). Sand is
classified according to the three main groups of framework components
(Q=quartz; F= feldspars; L= lithic fragments), considered where
exceeding 10%QFL and listed in order of abundance (classification
scheme after Garzanti, 2019). Feldspatho-quartzose sand is thus defined
as Q > F > 10%QFL > L, formally distinguishing between feldspar-
rich (Q/F < 2; plagioclase-rich if plagioclase/K-feldspar> 2, K-feld-
spar-rich if K-feldspar/plagioclase> 2) and quartz-rich (Q/F > 4)
compositions. Quartzose sand is defined as Q/QFL > 90%, and pure
quartzose sand as Q/QFL > 95%. These subtle distinctions proved to
be essential to discriminate among siliciclastic sediments deposited
along passive continental margins in different tectonic and climatic
settings (Garzanti et al., 2018a). Microcline with cross-hatch twinning
is called for brevity “microcline” through the text. Median grain size
was determined in thin section by ranking and visual comparison with
standards of ϕ/4 classes prepared by sieving in our laboratory.
From a split aliquot of the widest convenient size-window obtained

by wet sieving (mainly 15–500 μm), heavy minerals were separated by
centrifuging in Na-polytungstate (2.90 g/cm3) and recovered by partial
freezing with liquid nitrogen. In grain mounts,≥ 200 transparent
heavy minerals for each sample were either point-counted at appro-
priate regular spacing to obtain correct volume percentages or grain-
counted by the area method (Galehouse, 1971). On silt-sized offshore
samples, mineralogical analyses were carried out by coupling ob-
servations under the microscope and Raman counting (Andò et al.,
2011) on both low-density (< 2.90 g/cm3) and high-density (> 2.90 g/
cm3) fractions of the>15 μm class. Transparent heavy-mineral as-
semblages, called for brevity “tHM suites” throughout the text, are
defined as the spectrum of detrital extrabasinal minerals with den-
sity > 2.90 g/cm3 identifiable under a transmitted-light microscope.
According to the transparent-heavy-mineral concentration in the
sample (tHMC), tHM suites are defined as very poor (tHMC<0.5),
poor (0.5≤ tHMC<1), moderately poor (1≤ tHMC<2), moderately
rich (2≤ tHMC<5), rich (5≤ tHMC<10), or very rich (tHMC >
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10) (Garzanti and Andò, 2007, 2019). The sum of zircon, tourmaline,
and rutile over total transparent heavy minerals (ZTR index of Hubert,
1962) expresses the chemical durability of the tHM suite (Garzanti,
2017). In all analysed samples, corrosion features were assessed sys-
tematically by three different operators on ~4200 transparent heavy-
mineral grains, following the classification of surface textures in Andò
et al. (2012). Significant minerals are listed in order of abundance (high
to low) throughout the text. Key compositional parameters are sum-
marized in Table 1. The complete petrographic, heavy-mineral, and
surface-texture datasets are provided in Appendix Tables A2, A3, and
A4.

3.2. Geochemistry

Chemical analyses of a quartered aliquot of the 63–2000 μm class
obtained by wet sieving from 13 sand samples from the Congo River
and its tributaries, together with 7 coastal beach and river sands from
northernmost Angola, the Republic of Congo, and Gabon were carried
out at Bureau Veritas Mineral Laboratories (Vancouver, Canada).
Following a lithium metaborate/tetraborate fusion and nitric acid di-
gestion, major oxides and several minor elements were determined by
ICP-ES and trace elements by ICP-MS (see Appendix A for specific in-
formation on the adopted analytical protocol).
Several chemical indices may be used to estimate weathering, in-

cluding the Chemical Index of Alteration [CIA=100 ∙ A12O3/
(A12O3+CaO+Na2O+K2O)] (Nesbitt and Young, 1982) and the
Weathering Index [WIP=100 ∙ (CaO/0.7+ 2Na2O/0.35+ 2K2O/
0.25+MgO/0.9)] (Parker, 1970), calculated using molecular propor-
tions of mobile alkali and alkaline earth metals corrected for CaO in
apatite. Instead of correcting the CIA for CaO in carbonates based on
mineralogical data, which may result in significant error (Garzanti and
Resentini, 2016), wherever carbonate grains are present we prefer to
use the CIX index, a simple modification of the CIA that does not
consider CaO [CIX=100 ∙ A12O3/(A12O3+Na2O+K2O)] (Garzanti
et al., 2014a, 2014b). Weathering intensities can be calculated also for
each single mobile element separately, by comparing its concentration
to that of non-mobile Al in our samples and in the Upper Continental
Crust (UCC standard after Taylor and McLennan, 1995; Rudnick and
Gao, 2003): αAlE= (Al/E)sample/(Al/E)UCC (Garzanti et al., 2013a,
modified after α values of Gaillardet et al., 1999). Rare earth elements
(REE) were normalized to CI carbonaceous chondrites (McDonough and
Sun, 1995); the relative contribution to REE distributions by different
minerals was interpreted based on their typical REE patterns (as in
Fig. 5 of Garzanti et al., 2011). Key elements and weathering indices are
shown in Table 2. The complete geochemical dataset is provided in
Appendix Table A5.

3.3. Detrital geochronology

Detrital zircon was separated from quartz and feldspar using bro-
moform, and from (para)magnetic heavy minerals using a hand magnet
and a Frantz magnetic separator. UePb ages were determined at the
London Geochronology Centre using an Agilent 7700× laser ablation-
inductively coupled plasma-mass spectrometry (LA-ICP-MS) system,
employing a NWR193 Excimer Laser operated at 11 Hz with a 25 μm
spot size and 2.5–3.0 J/cm2 fluence. Because our main goal was to
compare different age distributions with each other like fingerprints, no
cathodo-luminescence imaging was done and the laser spot was always
placed “blindly” in the interior of zircon grains to treat all samples in
exactly the same way (“blind dating strategy” of Garzanti et al., 2018b).
The mass spectrometer data were converted to isotopic ratios using
GLITTER 4.4.2 software (Griffin et al., 2008), employing Plešovice
zircon (Sláma et al., 2008) as a primary age standard and GJ-1 (Jackson
et al., 2004) as a secondary age standard. NIST SRM612 was used as a
compositional standard for the U and Th concentrations. GLITTER files
were post-processed in R using IsoplotR 2.5 (Vermeesch, 2018a). Age

distributions were calculated by: (i) removing grains with a precision of
worse than 10%; (ii) removing grains with>+5/−15% age dis-
cordance; and, (iii) applying a Stacey-Kramers correction to the re-
maining measurements (Chew et al., 2014). This procedure yielded
over 1500 concordant ages from 14 samples. In analogy with previous
articles in the region (Garzanti et al., 2017a, 2018a), the five age
clusters recurring in the analysed samples are named Karoo
(240–295Ma; Permo-Triassic), Pan-African (0.5–0.65 Ga, late Neopro-
terozoic), Seke-Banza (0.9–1.1 Ga, Stenian-Tonian), Eburnean (mid-
Paleoproterozoic; 1.9–2.1 Ga), and Neoarchean (2.5–2.7 Ga). The
complete geochronological dataset is provided in Appendix B.

3.4. Channel-profile analysis

The geomorphic features characterizing the course of the Congo
River in Bas-Congo were quantified using TopoToolbox, a set of
MATLAB functions for the analysis of relief and flow pathways in digital
elevation models (DEM; Schwanghart and Scherler, 2014). Channel-
profile analysis was carried out on a 30m-resolution DEM provided by
Shuttle Radar Topography Mission Global (SRTM GL1; https://
opentopography.org) to identify major knick-points, defined as sites
where the channel gradient changes abruptly owing to a sharp local
change in bedrock strength and/or uplift rate. Normalized channel-
steepness indices (ksn) were calculated from the power-law relationship
S= ksA-θ between local channel slope S and contributing drainage area
A (a proxy for discharge; Hack, 1957; Flint, 1974). A fixed reference
concavity (θref = 0.45) was used to facilitate comparisons among
channel slopes with widely varying drainage areas and concavities
(Snyder et al., 2000; Whipple, 2004; Wobus et al., 2006; Norton and
Schlunegger, 2011).

4. Results

In this section, petrographic, heavy-mineral, geochemical and geo-
chronological data are presented subdivided by geographic area, from
the upper course upstream of the cuvette centrale (Fig. 5) to the lower
course in Bas-Congo (now Kongo Central province; Fig. 1), the Atlantic
coast, the shelf, and the deep sea. Petrographic parameters used below
include the Qp/Q (polycrystalline/total quartz) and P/F (plagioclase/
total feldspar) ratios.

4.1. Upper course tributaries

The Congo catchment is huge and largely difficult to access. Our
sample coverage of the numerous tributaries is consequently limited to
a few rivers in the upper catchment, i.e., the Ubangui and the Rusizi
and Malagarasi upstream of Lake Tanganyika.
Upstream of the cuvette centrale, the Ubangui River largely drains

Archean to lower Paleoproterozoic granitoid gneiss and granulite of the
Congo craton, and carries quartz-rich feldspatho-quartzose sand with K-
feldspar (including common microcline) > plagioclase, a few quart-
zose siltstone and granitoid rock fragments, mica (muscovite ≈ biotite),
and a poor tHM suite including kyanite with subordinate staurolite and
blue-green to green-brown hornblende, minor epidote, mainly pris-
matic sillimanite, rutile, tourmaline, garnet, and clinopyroxene.
The Rusizi River drains medium-grade to high-grade mid-

Paleoproterozoic (2.1–2.0 Ga) gneiss of the Rusizian-Ubendian belt ex-
humed around 1.85 Ga (Boven et al., 1999) and basalt, trachyte and
phonolite of the South Kivu volcanic field emplaced during Neogene
rifting (Furman and Graham, 1999). Sand entering Lake Tanganyika is
quartz-rich feldspatho-quartzose with K-feldspar (including common
microcline) > plagioclase and minor basaltic and high-rank metasedi-
mentary and metaigneous rock fragments. Mica is common (musco-
vite > biotite). The moderately poor tHM suite includes dominant blue-
green to green amphibole with subordinate tourmaline and minor pris-
matic or fibrolitic sillimanite, garnet, epidote, and staurolite (Table 1).

E. Garzanti, et al. Earth-Science Reviews 197 (2019) 102918

8

https://opentopography.org
https://opentopography.org


Ta
bl
e
1

Pe
tr
og
ra
ph
y
an
d
he
av
y
m
in
er
al
s
in
Co
ng
o
sa
nd
s.

Ri
ve
r
@
Si
te

Sa
m
pl
e

Q
KF

P
Lv
m

Lc
Lh

Lp
m

Lm
m
ic
a

H
M

tH
M
w
%

ZT
R

&
Ti
ox

Tt
n

A
p

M
on

Ep
G
rt

St
A
nd

Ky
Si
l

A
m
p

Cp
x

H
y

&
tH
M

U
pp

er
co
ur
se

tr
ib
ut
ar
ie
s

M
al
ag
ar
as
i@

Ila
ga
la

S3
83
7

81
1

2
13

0
0

3
0

0
0

10
0.
0

0.
3

32
4

0
0

1
26

1
2

13
0

2
20

0
0

0
10
0.
0

Ru
si
zi
@
G
at
um
ba

S3
85
6

71
12

5
2

0.
2

0
0

2
5

3
10
0.
0

1.
8

18
5

0
0

0
4

5
3

0
0

8
56

0
0

0.
5

10
0.
0

U
ba
ng
ui
@
Ba
ng
ui

S5
14
7

75
11

7
0

0
0

0
0

1
6

10
0.
0

0.
7

12
0

0
0

0
8

3
13

0
47

6
10

2
0

0
10
0.
0

Ba
s-
Co

ng
o
tr
ib
ut
ar
ie
s

N
se
le
@
E
Ki
ns
ha
sa

S5
20
8

97
1

0.
3

1
0

0
0

0
0.
3

1
10
0.
0

0.
3

87
2

0
0

0
1

0
6

0
3

0
0.
5

0
0

0.
5

10
0.
0

In
ki
si
@
Ki
sa
nt
u

S5
20
9

97
0.
3

0
1

0
0.
3

0.
3

0.
3

0
1

10
0.
0

0.
9

12
0

0
0

0
3

8
5

0
72

0
0

0
0

0
10
0.
0

Lu
nk
un
ga
@
Ko
m
oi
na

S5
21
0

90
1

1
0.
3

0
1

5
1

0
0

10
0.
0

0.
1

85
13

0
0.
4

2
0

0
0

0
0

0
0

0
0

0
10
0.
0

Kw
ilu
@
Kw
ilu

S5
21
1

84
2

3
2

0
3

4
1

0
1

10
0.
0

0.
3

82
13

0
0.
4

1
0.
4

0
0.
4

0
2

0
0.
4

0
0

0
10
0.
0

M
ba
ng
al
a
@
Vu
nd
a

S5
21
7

34
1

2
0

0
0

56
6

1
0

10
0.
0

1.
6

94
3

0
0

1
3

0
0

0
0

0
0

0
0

0
10
0.
0

Bu
nd
i@

In
ga

S5
21
2

66
7

8
1

0
0

5
5

0.
3

8
10
0.
0

8.
4

2
0

0
0

0
94

0
0

0
0

0
5

0
0

0
10
0.
0

M
po
zo
@
M
at
ad
i

S5
21
3

73
9

6
0.
2

0
0

2
3

3
4

10
0.
0

2.
3

33
0

0.
5

0
0

41
1

0
0

0.
5

0.
5

23
0

0
0

10
0.
0

Co
ng
o
R
iv
er

in
Ba
s-
Co

ng
o

Co
ng
o
@
G
af
ur
a

S5
20
6

99
0

0
0

0
0.
3

0
0

0
0

10
0.
0

0.
2

79
0.
5

0
0

0
1

0
9

1
2

3
2

1
0

1
10
0.
0

Co
ng
o
@
Li
nd
a

S5
20
7

99
0

0
0

0
0

0
0

0
1

10
0.
0

0.
1

68
4

0
0

0
8

0
9

0
2

2
3

2
0

1
10
0.
0

Co
ng
o
@
Br
az
za
vi
lle

S3
53
3

97
2

0
0.
3

0
0

0
0

0
0.
3

10
0.
0

0.
0

49
2

0
0

1
14

4
17

1
9

0
4

0
0

0
10
0.
0

Co
ng
o
@
Br
az
za
vi
lle

S5
14
8

93
4

1
0

0
0

0
0

0
2

10
0.
0

0.
2

61
0

0
0

0.
5

7
4

14
0

6
2

4
1

0
0

10
0.
0

Co
ng
o
@
Ki
ns
ha
sa

S5
11
4

98
1

0
0

0
0

0.
3

0
0

1
10
0.
0

0.
2

78
0

0
0

0.
4

6
2

10
0

2
0

2
0.
4

0
0

10
0.
0

Co
ng
o
@
Lu
oz
i

S5
21
6

93
2

1
0

0
0

0.
2

0
1

1
10
0.
0

0.
5

66
2

0
1

0
11

2
1

0
5

3
8

0
0

0.
5

10
0.
0

Co
ng
o
@
M
at
ad
i

S5
21
4

97
1

0.
3

0.
3

0
0

0.
3

1
0

1
10
0.
0

0.
1

69
0

0
0

0
9

3
7

0
5

1
5

0
0

0
10
0.
0

Co
ng
o
@
Bo
m
a

S5
21
5

88
7

2
1

0
0

1
1

0.
3

1
10
0.
0

0.
5

67
2

0
0

0.
5

12
3

5
0

1
1

5
2

0
0.
5

10
0.
0

Co
ng
o
@
Is
le
de
M
at
eb
a

S5
11
5

97
1

1
0

0
0

0
0

0
1

10
0.
0

0.
3

44
0

0.
5

0
0

20
2

15
0

10
3

5
0

0.
5

0
10
0.
0

Es
tu
ar
y
ch
an
ne
l@

So
yo

S4
89
9

98
1

1
0

0
0

0
0

0
0.
3

10
0.
0

0.
3

36
0

0.
5

0.
5

0
8

3
9

0
33

0.
5

10
0

0
0

10
0.
0

Es
tu
ar
y
be
ac
h
@
So
yo

S4
89
8

98
1

1
0

0
0

0
0

0.
3

0
10
0.
0

0.
1

47
0

1
1

0
19

2
5

1
7

3
13

0
0

0
10
0.
0

A
tl
an
ti
c
co
as
t

A
kw
en
go
Ba
y
be
ac
h

S5
61
7

97
1

0.
3

0.
3

0
0

1
0

0
0

10
0.
0

0.
09

67
0

0
1

0
2

10
12

0
4

1
2

1
0

0
10
0.
0

Li
br
ev
ill
e
be
ac
h

S5
53
0

92
7

1
0

0
0

0
0

0
0

10
0.
0

0.
09

79
0

0
4

0
1

6
2

0
1

0
6

0.
5

1
0

10
0.
0

SW
Po
rt
G
en
til
be
ac
h

S5
61
8

98
1

0.
3

0
0

0
0

0
0

0.
3

10
0.
0

0.
24

57
0

0
0

0
1

1
24

1
14

1
1

0
0

0
10
0.
0

Po
in
te
N
oi
re
be
ac
h

S0
16
2

99
1

0
0

0.
1

0
0.
1

0
0

0
10
0.
0

0.
3

67
0.
3

0
0

0
1

0
13

0.
3

18
1

0
0

0
0

10
0.
0

Lo
us
so
ni
Ri
ve
r

S4
05
3

99
0

0
0

0
0

1
0

0
0.
3

10
0.
0

0.
01

77
0

0
4

0
3

9
6

0
1

0
0

0
0

0
10
0.
0

Lo
ém
é
Ri
ve
r

S0
16
1

99
0.
3

0
0

0
0

0
0

0
1

10
0.
0

0.
5

71
0.
4

0
0

0
8

0
10

1
10

0
0

0
0

0
10
0.
0

Q
ui
m
to
m
ba
be
ac
h

S4
90
1

97
1

1
0

0.
3

0
0

0
0

0.
3

10
0.
0

1.
3

13
0

0
1

0
31

13
9

0
17

0
16

0
0

0
10
0.
0

Q
ui
fu
m
a
be
ac
h

S4
90
2

95
3

1
0

0
0

0
0

0
1

10
0.
0

0.
8

5
0

0.
5

0
0

39
13

5
0

15
0

22
0

0
0

10
0.
0

Q
ui
va
nd
a
be
ac
h

S4
90
3

88
6

3
0

0
0

0
0.
3

0
3

10
0.
0

3.
1

4
0

0
0

0
30

24
0.
4

1
9

0
32

0
0

0
10
0.
0

Lu
cu
lu
ri
ve
r
m
ou
th

S4
90
4

86
4

5
0

0
0

0
0

0.
3

5
10
0.
0

5.
1

7
0

1
0

0
30

33
2

0
15

0
13

0
0

0
10
0.
0

M
bu
a-
M
oy
o
be
ac
h

S4
90
5

90
5

4
0

0
0

0.
3

0
0

2
10
0.
0

3.
6

3
0

1
1

0
46

19
1

0
6

0
23

0
0

0
10
0.
0

Sh
el
f
&
de
ep

se
a

Co
ng
o
sh
el
f

G
eo
B1
00
4–
3

82
5

3
0.
4

0
0

0
0

0
10

10
0.
0

2.
4

19
0

0
1

0
29

23
0

0
8

2
19

0
0

0
10
0.
0

S
of
Co
ng
o
Ca
ny
on

G
eo
B1
31
09
A

70
10

20
0

0
0

0
0

0
0.
1

10
0.
0

0.
0

15
0

1
4

0
21

1
1

0
4

4
24

12
4

7
10
0.
0

S
of
Co
ng
o
Ca
ny
on

G
eo
B1
31
09
B

64
7

14
0

1
0

0
0

1
14

10
0.
0

0.
3

9
0

0
9

0
35

0
0

0
0

0
4

17
26

0
10
0.
0

N
of
Co
ng
o
Ca
ny
on

G
eo
B1
31
15
A

62
0

30
0

0
0

0
0

2
6

10
0.
0

0.
6

4
0

0
0

0
5

1
0

0
0

0
12

31
47

0
10
0.
0

N
of
Co
ng
o
Ca
ny
on

G
eo
B1
31
15
B

72
4

21
0

0
0

0
0

0
2

10
0.
0

0.
1

14
0

0
1

0
7

2
0

1
0

0
12

40
19

3
10
0.
0

Q
=
qu
ar
tz
;
KF
=
K-
fe
ld
sp
ar
;
P
=
pl
ag
io
cl
as
e;
L
=
ap
ha
ni
tic
lit
hi
c
gr
ai
ns
(L
vm
=
vo
lc
an
ic
an
d
m
et
av
ol
ca
ni
c;
Lc
=
ca
rb
on
at
e;
Lh
=
ch
er
t;
Lp
m
=
pe
lit
e
an
d
lo
w
-r
an
k
m
et
ap
el
ite
;
Lm
=
hi
gh
-r
an
k
m
et
am
or
ph
ic
;

tH
M
w
%
=
tr
an
sp
ar
en
t
he
av
y
m
in
er
al
s
(w
ei
gh
t
%
);
ZT
R
=
zi
rc
on
+
to
ur
m
al
in
e
+
ru
til
e;
&
Ti
ox
=
ot
he
r
Ti
-o
xi
de
s
(m
ai
nl
y
an
at
as
e)
;
Tt
n
=
tit
an
ite
;
A
p
=
ap
at
ite
;
M
on
=
m
on
az
ite
;
Ep
=
ep
id
ot
e;
G
rt
=
ga
rn
et
;

St
=
st
au
ro
lit
e;
Ky
=
ky
an
ite
;S
il
=
si
lli
m
an
ite
;A
m
p
=
am
ph
ib
ol
e;
Cp
x
=
cl
in
op
yr
ox
en
e;
H
y
=
hy
pe
rs
th
en
e;
&
tH
M
=
ot
he
r
tr
an
sp
ar
en
th
ea
vy
m
in
er
al
s
(c
hl
or
ito
id
,C
r-
sp
in
el
,o
liv
in
e,
en
st
at
ite
,b
ar
ite
,c
or
un
du
m
).

E. Garzanti, et al. Earth-Science Reviews 197 (2019) 102918

9



The Malagarasi River, sourced in southern Burundi, drains
Mesoproterozoic to Neoproterozoic clastic rocks with intercalated mid-
Neoproterozoic flood basalts, and the southwestern part of the Tanzania
craton. Sand entering Lake Tanganyika is litho-quartzose with mafic
volcanic and siltstone/sandstone rock fragments. The very poor tHM
suite includes epidote, amphibole, andalusite, zircon, tourmaline, and
minor rutile, staurolite and prismatic sillimanite.
In Rusizi and Malagarasi sand, SiO2 is high (85–88wt%), the CIA is

60–61, and αAl indices for Sr, Ca, and Na mainly range between 2 and 3
(Table 2). Zr is ~100 ppm and the Eu anomaly moderately negative
(Eu/Eu* 0.69–0.79).

4.2. Bas-Congo tributaries

Tributaries in the lower Congo course have variable composition
(Figs. 7 and 8). Sand carried by the Nsele River, entering the Malebo
Pool northeast of Kinshasa and draining Mesozoic and Cenozoic sedi-
ment covers of the cuvette centrale, is pure quartzose with a very poor
tHM suite dominated by zircon, tourmaline and rutile, with minor
staurolite and kyanite (Table 1). The UePb age spectrum of detrital
zircon is multimodal, with Pan-African (27%) and Seke-Banza (15%)
peaks, Eburnean (10%) and Neoarchean (6%) clusters, and rare Per-
mian and Triassic grains (2%).
Sand carried by tributaries draining sedimentary to low-rank me-

tasedimentary rocks of the Cataractes Group or the unconformably
overlying Inkisi siliciclastic rocks range from pure quartzose (Inkisi;
Fig. 7B) and quartzose (Lunkunga) to litho-quartzose (Kwilu; Fig. 7C)
and quartzo-lithic metasedimentaclastic (Mbangala; Fig. 7D). Trans-
parent-heavy-mineral suites range from poor and kyanite-dominated
with minor garnet and staurolite (Inkisi) to very poor and either ZTR-
dominated with anatase and rare monazite (Lunkunga, Kwilu), or
tourmaline-dominated (Mbangala).
The UePb zircon-age spectra of Inkisi and Lunkunga sands are

multimodal, with Pan-African (20% and 18%) and latest
Mesoproterozoic (24%) peaks, and minor Eburnean (9% and 7%), and

Neoarchean (6% and 4%) clusters. Inkisi sand also displays a Permo-
Triassic (Karoo) cluster (5%; Fig. 9).
Tributaries of the lowermost course draining granitoid, meta-

volcanic, and metasedimentary rocks of the Seke-Banza Group together
with the underlying Kimezian basement carry either quartz-rich feld-
spatho-quartzose sand with a rich epidote-dominated tHM suite in-
cluding actinolite (Bundi), or litho-feldspatho-quartzose sand with a
moderately rich tHM suite including epidote, amphibole, and zircon
(Mpozo). UePb age spectra of detrital zircons are bimodal with a major
Seke-Banza peak and a subordinate Eburnean cluster (15–22%). Bundi
sand is characterized by a sharp peak at 906 ± 16Ma, suggesting
massive provenance of zircon grains from igneous rocks of the Seke-
Banza Group (Fig. 6). Mpozo sand displays a slightly older peak
(962 ± 26Ma) and also includes a minor early Mesoproterozoic
cluster (~1.48 Ga; 4%) and various early Paleoproterozoic to Me-
soarchean ages.
Quartz enrichment is much stronger in Inkisi and Lunkunga sands

(SiO2 97–98wt%) than in Mbangala, Bundi, and Mpozo sands (SiO2
84–90wt%). The CIA decreases from as high as 87 for Inkisi sand to
49–54 for Bundi and Mpozo sand (Table 2). Zr is 100–150 ppm in Inkisi,
Lunkunga, and Mbangala sands but reaches 300–400 ppm in Bundi and
Mpozo sands. REEs are highest in Mbangala sand and the Eu anomaly
ranges from 0.44 in Lunkunga sand to 0.89 in Bundi sand.

4.3. Congo River

Congo River sand in Bas-Congo is pure quartzose (Fig. 7A, F), with
mainly well rounded to subrounded monocrystalline quartz commonly
displaying abraded overgrowths (Qp/Q < 5%), few feldspars, negli-
gible lithic fragments, and very poor tHM suites dominated by zircon,
tourmaline, and rutile. Upstream of Malebo Pool, altered plagioclase or
K-feldspar grains, and granitoid, felsic volcanic, quartzose siltstone, or
chert rock fragments are only rarely recorded; staurolite, minor epidote,
sillimanite, kyanite, anatase, amphibole, augitic clinopyroxene, and
rare andalusite and Cr-spinel occur. Between Kinshasa and Matadi,

Table 2
Geochemistry of Congo sands. The Si/Zr ratio is ~1600 in the UCC standard (Taylor and McLennan, 1995; Rudnick and Gao, 2003) and ~12,600 in commercial silica
used in our lab, which is thus less pure than Pointe Noire and Libreville beach sand! Chemical weathering indices as defined in Section 3.2. The Z/(Z+T) ratio
(Z= zircon; T= tourmaline) is proposed here as an index of hydraulic sorting in quartz-rich sand and sandstone; n.d.= not determined.

River @ Site Sample SiO2 Zr Si/Zr CIA CIX WIP αAlMg αAlCa αAlNa αAlK αAlRb αAlSr αAlBa Z/(Z+T)

wt% ppm

Upper course tributaries
Malagarasi @ Ilagala S3837 88.1 92 4456 61 70 13 0.9 1.8 2.5 0.8 0.8 2.9 0.9 46%
Rusizi @ Gatumba S3856 84.6 106 3750 60 64 28 1.4 3.5 1.5 0.7 0.6 2.7 0.8 9%

Bas-Congo tributaries
Inkisi @ Kisantu S5209 97.8 103 4432 87 91 1 2.9 6.1 22.5 2.8 3.0 3.8 1.1 77%
Lunkunga @ Komoina S5210 96.6 147 3063 71 79 3 0.7 2.6 8.0 1.0 0.9 1.6 0.9 52%
Mbangala @ Vunda S5217 84.4 123 3212 76 75 14 2.4 14.9 30.9 0.7 0.5 8.8 0.9 32%
Bundi @ Inga S5212 87.8 319 1287 49 67 20 4.2 0.8 1.7 0.8 1.0 1.3 0.8 100%
Mpozo @ Matadi S5213 89.7 399 1050 54 60 21 3.0 2.4 1.2 0.6 0.7 2.0 0.8 83%

Congo River & estuary
Congo @ Linda S5207 97.8 130 3516 75 85 1 2.2 1.8 4.2 2.4 2.2 2.1 1.1 47%
Congo @ Brazzaville S3533 98.5 70 6547 63 72 1 1.0 1.4 3.9 0.7 0.7 1.1 0.3 44%
Congo @ Kinshasa S5114 96.9 497 911 85 90 1 3.2 4.4 12.2 2.6 2.2 4.1 1.2 85%
Congo @ Isle de Mateba S5115 97.6 57 7989 76 87 1 4.0 2.2 8.1 2.1 1.9 3.4 1.1 41%
Estuary channel @ Soyo S4899 96.6 86 5236 90 94 1 5.6 4.6 12.8 7.3 6.9 4.3 2.8 36%
Estuary beach @ Soyo S4898 96.2 42 10,651 73 77 3 4.2 4.4 2.9 1.3 2.0 1.6 0.6 23%

Atlantic coast
Libreville beach S5530 93.8 33 13,410 35 57 14 1.5 0.4 4.7 0.3 0.7 0.4 0.2 66%
Pointe Noire beach S0162 98.2 26 17,393 60 90 1 3.7 0.6 22.5 2.4 3.0 0.8 0.7 51%
Loussoni River S4053 98.3 80 5767 80 82 0 2.1 2.3 6.3 1.4 1.1 1.4 0.5 53%
Loémé River S0161 99.0 203 2286 96 90 0 1.3 2.2 8.0 3.4 2.7 1.9 1.1 64%
Quifuma beach S4902 94.9 48 9262 42 72 7 2.7 0.4 1.8 1.2 2.3 0.5 0.4 20%
Luculu river mouth S4904 91.9 439 978 62 74 11 3.2 1.6 2.2 1.3 2.7 1.0 0.6 46%
Mbua-Moyo beach S4905 89.0 174 2394 41 67 18 2.2 0.4 1.2 1.2 2.4 0.4 0.5 67%
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Congo sand contains a little more polycrystalline quartz, feldspars (P/F
13–43%), metasedimentary rock fragments, and muscovite, together
with a little more epidote, amphibole, garnet, and kyanite. Estuary sand
downstream of Boma (P/F 40–57%) has lower ZTR index and relatively
higher epidote, tourmaline, amphibole, and kyanite (Table 1).
The multimodal UePb zircon-age distribution in trunk-river sand

across Bas-Congo includes: (1) a few Permo-Triassic grains; (2) a major
Pan-African peak around 0.6 Ga, decreasing from ~27% upstream of
Malebo Pool to ~21% in estuary sand; (3) a subordinate peak around
1.0 Ga, rather constant from ~19% upstream of the Malebo Pool to
~18% in the estuary); (4) an Eburnean cluster (~12%); (5) a
Neoarchean cluster (~7%) (Fig. 9).
Prominent quartz enrichment in river and estuary sand is reflected

in very high SiO2 (96–98wt%), with minor Al2O3 (< 1.5 wt%), Fe2O3
(< 0.6 wt%) and TiO2 (< 0.5 wt%), and low trace-element concentra-
tions (Zr mainly 42–86 ppm, Ba mainly 26–38 ppm). Chemical weath-
ering indices are notably variable and high but not extreme (CIA 63–90,
CIX 72–94), whereas the WIP is mostly 1 only. Alpha indices referred to
Al are highest for Na, and mostly< 5 for Mg, Ca and Sr, ~2 for K and
Rb, and≥1 for Ba (Table 2). In estuary mud, far less affected by quartz
enrichment (SiO2 46wt%), the CIA is 81, the CIX 91, the WIP 16, and
αAl indices reach 13 for Na and range between 3.7 and 3.0 for Mg, Sr, K,
and Ca. Chondrite-normalized REE patterns display classical LREE en-
richment (LaN/SmN 3–6 for sand, 4.1 for mud) and Eu anomaly

generally more negative for sand than for mud (Eu/Eu* 0.46–0.69 vs.
0.66), suggesting monazite contribution. The lesser decrease for MREEs
(GdN/HoN 0.8–1.7 for sand vs. 1.5 for mud) may reflect apatite con-
tribution, whereas HREE distribution is flat to rising for sand (GdN/YbN
0.5–1.4 for sand vs.1.6 for mud), suggesting zircon contribution.

4.4. Atlantic coast south of the Congo mouth

Beach sand in northernmost Angola is pure quartzose, with poor to
moderately poor tHM suites including epidote, amphibole, kyanite,
garnet, and staurolite. The ZTR index steadily decreases southward
from 13 to 3 (Table 1). Feldspar increases progressively southward (P/F
31–53%), and sand is quartzose south of the Luculu mouth, where tHM
suites are moderately rich and include epidote, garnet, amphibole, and
kyanite.
In beach sand ~20 km south of the Congo mouth, UePb zircon-age

spectra are multimodal and similar to Congo estuary sand, with Pan-
African (26%), Seke-Banza (15%), a larger Eburnean (20%), and
Neoarchean (9%) clusters. The Eburnean cluster increases farther south
(~47%) to become predominant along most of coastal Angola (Fig. 5 in
Garzanti et al., 2018a). Triassic to Permian ages also tend to increase
southward, reaching 9% in Luculu mouth sand.
Geochemical composition reflects mineralogical composition, with

progressive southward decrease in SiO2 from 95 to 89wt% and

Fig. 7. Petrography of river sand in Bas-Congo. (A) Monocrystalline quartz grains, almost the sole survivors to intense weathering and multiple recycling in the
cuvette centrale. Note that quartz roundness increases with grain size. (B) Rounded monocrystalline quartz multiply recycled from Neoproterozoic to Mesozoic
sandstones in Bas-Congo. (C, D) Sand shed from sedimentary and very-low-grade metasedimentary rocks of the Cataractes Group. (E) Sand largely derived from
metavolcanic rocks of the Seke-Banza Group. (F) Congo sand downstream of Boma, still dominantly consisting of monocrystalline quartz. Abbreviations: e= epidote;
h= chert; m= cross-hatched microcline; p=plagioclase; q= quartz; s= shale/slate and other pelite to low-rank-metapelite lithics. Blue scale bar for
scale= 100 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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consequent weaker dilution of most other elements. Chemical indices
indicate lower weathering than in Congo sand (Table 2). Luculu mouth
mud, however, yielded very high values of weathering indices (CIA 90,
CIX 94, WIP 9, αAlNa 30). REE patterns become less steep and the Eu
anomaly less negative southward (LaN/SmN 5–7 vs. 9.3; Eu/Eu*
0.73–0.81 vs. 0.68).

4.5. Atlantic coast north of the Congo mouth

Beach sand in the Republic of Congo is pure quartzose, consisting
almost entirely of commonly rounded monocrystalline quartz grains
displaying deep etch pits, with only a few microcline grains and a very
poor tHM suite with zircon, rutile, tourmaline, staurolite, kyanite, and
rare andalusite. River sand contains a few quartzose siltstone grains and
very poor tHM suites dominated by zircon and tourmaline, with rutile,
staurolite, kyanite, epidote, and garnet (Table 1). Chemical composition
is almost pure SiO2 (98–99 wt%). The CIA, CIX and αAl indices are si-
milar to those of Congo sand, and the WIP index is< 1. REE patterns
are very steep (LaN/SmN 10.9–11.8) where zircon is rare (Zr
26–80 ppm), or nearly flat (LaN/SmN 1.3) where zircon occurs (Zr
203 ppm); Eu/Eu* is 0.50–0.66.
Medium to coarse-grained beach sand in Gabon is pure quartzose.

Fine-grained beach sand is quartzose with mostly K-feldspar, and
therefore characterized by lower SiO2 and weathering indices than in
the Republic of Congo. The very poor tHM suites are dominated by ZTR
minerals with minor garnet, staurolite, amphibole, kyanite, and rare
apatite, epidote and pyroxene (Table 2).

4.6. Shelf and deep-sea

Fine-grained sand collected on the inner shelf just south of the
Congo mouth at 31m b.s.l. is quartzose and includes common brown
goethite ooids, a few plagioclase and K-feldspar grains (P/F 0.38), and a

moderately rich tHM suite including epidote, garnet, amphibole, zircon,
rutile, kyanite, and minor andalusite, tourmaline, apatite and staurolite.
Very fine-grained shelfal sediment collected north of the Congo mouth
at 45m b.s.l. dominantly consists of brown pellets and foraminifera.
Deep-sea sediment cored offshore of the Congo mouth at 2400 to

3000m b.s.l. contains fine silt (≤ 10 μm in mean diameter) notably
richer in feldspar than Congo river and estuary sand. South of the
Congo Canyon, sand-sized green glaucony grains with pellets, clay ag-
gregates, bioclasts, and pyrite are dominant. The silt-sized feldspatho-
quartzose siliciclastic fraction accounts for only< 2% of framework
grains and includes quartz, albite, K-feldspar, and Ca-plagioclase (Q/F
2.3–3.1; P/F 0.67). Muscovite was rarely recorded. The very poor but
notably varied tHM suite consists of epidote, hypersthene, clinopyr-
oxene, amphibole (including rare oxy-hornblende), minor zircon, apa-
tite, tourmaline, and rare kyanite, sillimanite, enstatite and olivine
(Table 1).
North of the Congo Canyon, sediment mostly consists of bioclasts or

pellets and clay aggregates with glaucony and pyrite. The silt-sized
feldspatho-quartzose siliciclastic fraction, accounting for 4–6% of fra-
mework grains, includes quartz and Ca-plagioclase dominating over
albite and K-feldspar (Q/F 2.1–2.8; P/F 0.83–1.00). Muscovite was
rarely recorded. The very poor tHM suite is dominated by green augite
and hypersthene, with subordinate amphibole (dominantly oxy-horn-
blende but including even rare glaucophane), minor zircon and epidote,
and rare rutile, garnet, tourmaline, corundum and olivine.
Because shelfal to deep-marine sediments are typically dominated

by intrabasinal and authigenic grains including bioclasts, glaucony,
ferruginous ooids or pyrite (Giresse, 1980), their chemical composition
can be hardly compared with that of siliciclastic fluvial and beach
sands, which dominantly consist of quartz, feldspar, and other extra-
basinal detrital minerals. SiO2 accounts for< 50wt% and Al2O3 is
~15wt% in deep-sea muds, which tend to have higher K, Rb, Pb, Mg,
Mn, Ni, and Cu, and lower Ca, Sr, Zr, Ti, and Zn than mud at the Congo

Fig. 8. Petrography and heavy minerals. Pure quartzose composition and ZTR-dominated tHM suites characterize Congo sand upstream of Malebo Pool and coastal
sand north of the mouth, whereas sand of Congo tributaries in the upper catchment and in Bas-Congo, sand of coastal Angola, and offshore muds include less durable
minerals in various proportions. Q= quartz (Qm=monocrystalline); F= feldspars (P=plagioclase; K=K-feldspar); L= lithics (Lm=metamorphic;
Lv= volcanic; Ls= sedimentary); ZTR= zircon + tourmaline + rutile; tHMC= transparent-heavy-mineral concentration. Fields in the QFL diagram after Garzanti
(2019); in the nested version of the same QFL plot, data are centered to allow better visualization of pure quartzose samples (von Eynatten et al., 2002; Comas-Cufí
and Thió-Henestrosa, 2011). In the compositional biplot (Gabriel, 1971), both multivariate observations (points) and variables (rays) are displayed. The length of
each ray is proportional to the variance of the corresponding element in the data set. If the angle between two rays is close to 0°, 90°, or 180°, then the corresponding
elements are directly correlated, uncorrelated, or inversely correlated, respectively.
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or Luculu river mouths. Shelfal sand rich in goethite ooids has also
SiO2 < 50wt% but it is much richer than fluvial and beach sand
especially in Fe, but also in Mg, Mn, Rb, Ni, and Zn.

5. Provenance

Provenance inferences drawn in this section include the relative
zircon budget and the origin of offshore sediments, which document
contributions from sources other than the Congo River, including long-
distance airborne transport from volcanic centres.

5.1. Hints from detrital zircon

The same multimodal zircon-age spectra observed in upper
Mesozoic strata of the Kasai region (Agyemang et al., 2016) and in
other regions of the vast Congo catchment (de Wit and Linol, 2015;
Linol et al., 2016) are recorded in Congo River sand across Bas-Congo
(Fig. 9). A similar multimodal spectrum characterizes sand of the Nsele
tributary, mostly recycled from Mesozoic and Cenozoic sediments of the
cuvette centrale.
Zircon-age spectra in sand of Bas-Congo tributaries draining the

Atlantic Rise reflect those of zircon grains in parent rocks of the West
Congo Supergroup and Kimezian basement (Frimmel et al., 2006;
Affaton et al., 2016). Pan-African, Seke-Banza, and minor Eburnean and
Neoarchean clusters occur in Lunkunga sand, where zircon grains are
all recycled from siliciclastic rocks of the Cataractes Group (Fig. 6).
Bundi and Mpozo sands, instead, are characterized by early Neopro-
terozoic (Tonian) and mid-Paleoproterozoic (Rhyacian-Orosirian)
peaks, reflecting largely first-cycle supply from Seke-Banza igneous and
metaigneous rocks and subordinate direct or indirect supply from Ki-
mezian basement (Fig. 6C). Among tributaries joining the trunk river
downstream of Malebo Pool, only the Inkisi carries a few Permo-
Triassic zircons.
Most zircon grains carried by the Congo River to the ocean are

polycyclic and reworked even several times from Neoproterozoic and
younger siliciclastic rocks. Given the broad similarity of zircon-age
spectra in trunk-river sand from upstream of Malebo Pool to the mouth,
it is difficult to quantify the local supply from the Atlantic Rise relative
to zircon grains derived from the cuvette centrale and upstream bran-
ches. The attempt illustrated in Fig. 10 suggests that local sources may
account for a large proportion (up to 43%) of zircon grains reaching the
estuary. Our integrated petrographic and heavy-mineral dataset in-
dicates that zircon concentration is higher by an order of magnitude in
sand of the Bundi and Mpozo tributaries draining igneous and me-
taigneous rocks of the Seke-Banza Group and underlying Kimezian
basement than in trunk-river sand upstream of Malebo Pool
(0.12–0.57% vs. 0.03–0.04% of framework grains). Based on these data,
simple calculations suggest that Bas-Congo tributaries supply approxi-
mately 10% of total bedload reaching the Atlantic Ocean, where
average zircon concentration has increased to 0.05–0.06%.

5.2. Offshore sediments

The siliciclastic fraction of sediments sampled at circalittoral to
abyssal depths offshore of the Congo mouth is less quartz-rich and

Fig. 9. UePb ages of detrital zircons (age vs. frequencies plotted as Kernel
Density Estimates using the provenance package of Vermeesch et al., 2016).
Congo sand is characterized by polymodal spectra with four major age clusters
at ~0.6, ~1.0, ~2.0, ~2.6 Ga, and a few Permo-Triassic and Mesoproterozoic
ages. The same age clusters recur in eastern Bas-Congo tributaries draining the
Cataractes Group and younger sedimentary rocks, whereas Bundi and Mpozo
sands display a major Seke-Banza peak with subordinate Eburnean cluster.
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distinct from Congo River sediments in both bulk mineralogy and
heavy-mineral suites. Congo sand, therefore, is not distributed widely
across the continental terrace but instead efficiently funnelled along the
Congo Canyon to feed directly as turbidites the huge deep-sea fan. The
extrabasinal fraction of fine-grained sand rich in brown goethite ooids
collected on the inner shelf south of the mouth reflects contribution
from northward longshore drift (Garzanti et al., 2018b). Instead, very
fine sand north of the mouth consists of brown pellets and foraminifera
entirely, indicating that longshore transport is interrupted at the Congo
mouth, where northward-drifting sand is captured in the canyon and all
conveyed to the deep sea.
The extrabasinal silt fraction contained in abyssal muds deposited

both south and north of the Congo canyon includes Ca-plagioclase and
very poor tHM suites characterized by augitic clinopyroxene and hy-
persthene locally associated with oxy-hornblende and olivine, in-
dicating provenance from active volcanoes. Volcaniclastic detritus is
more abundant in the north, and the source of ash fall is thus likely
represented by the Cameroon Line - characterized by alkaline magmas
mainly ranging in composition from olivine basalts to hypersthene-
normative basalts - and most plausibly by its continental sector where
explosive eruptions of trachytic to rhyolitic products are more frequent
(Déruelle et al., 2007; Njome and de Wit, 2014).

6. Weathering and mineral durabilities

Notwithstanding the known limitations of weathering indices
(Garzanti and Resentini, 2016 and references therein) and their im-
precise determination in Congo sand because of extreme quartz en-
richment and low content of all other elements including aluminium,
the values obtained reflect extreme weathering conditions in the hot
and hyper-humid equatorial Congo catchment (Négrel et al., 1993;

Dupré et al., 1996). The CIA values calculated for Congo River sedi-
ments are in the same range as those obtained for Kagera River sedi-
ments derived from rift highlands in the east (CIA 63–90 vs. 71–87 for
sand; CIA 81–91 vs. 77–88 for cohesive mud; Garzanti et al., 2013a,
2013b). The CIA values reach as high as 94–95 for Congo River clay,
which dominantly consists of kaolinite (80–92% of clay minerals vs.
59–62% in Kagera mud). Weathering indices are not significantly dif-
ferent for sediments carried by Bas-Congo tributaries, where the CIA is
83–92 for cohesive mud (< 32 μm) and 88–95 for clay (Dinis et al.,
2019). The indicative order of bulk-sediment mobility as defined by αAl

indices is Na≫ Ca > Sr≥Mg > K≈Rb≥Ba for sand and
Na≫ Ca > Sr > Mg≈K > Ba≥Rb for mud, which is in agreement
with what observed along equatorial rift highlands to the east (Garzanti
et al., 2013a, 2013b).

6.1. Quartz

Congo sand is dominated by mainly rounded and well rounded
monocrystalline quartz, although finer grains may be angular to sub-
angular (Fig. 7A, B, F). Strongly corroded quartz grains with concave
outlines and etch pits are only a minority (e.g., compare with Figs. 3B,
D, and 4C in Garzanti et al., 2013a). As for silicates in general, quartz
solubility is influenced by pH, being minimum at pH ~3 and very low
at ordinary temperatures in the typical range of ground water (pH 2–8;
Brady and Walther, 1990). This explains why quartz is the most durable
common mineral under most natural conditions, and why it is con-
centrated in sediments by weathering, especially where chemical attack
is cumulated through multiple sedimentary cycles as recurred in the
Congo catchment since the Neoproterozoic. Quartz solubility, however,
may increase with increasing density of lattice dislocation and presence
of microfractures. Strained monocrystalline grains with undulose ex-
tinction or polycrystalline grains with sutured contacts may thus be less
durable and selectively depleted relative to unstrained monocrystalline
quartz (Blatt, 1967a; Basu, 1985).
In Bas-Congo tributaries, quartz varies markedly from as high as

99%QFL in Nsele sand and 98%QFL in Inkisi sand, where corrosion pits
and concave outlines are relatively uncommon as in trunk river sand
(Fig. 7B and Fig. 7A,F), to as low as 35%QFL in Mbangala sand
(Fig. 7D), where even deeply etched “runiquartz” is observed. Quartz
abundance thus chiefly reflects the abundance of quartzose sandstone
in the catchment and recycling, rather than weathering intensity.

6.2. Feldspars

Among the few detrital feldspars in Congo sand, 59% are untwinned
K-feldspar, 15% cross-hatched microcline, and 26% plagioclase. In Bas-
Congo tributaries, instead, plagioclase is as abundant as K-feldspar and
cross-hatched microcline uncommon. In beach and river sand of the
Republic of Congo and Gabon, plagioclase drops to 12% and cross-
hatched microcline rises to 37%. Although feldspar abundance and
relative proportions among feldspar types largely depend on source
rock lithologies, these figures are in agreement with the widely as-
sumed order of durability of detrital feldspars and their ability to sur-
vive weathering and recycling (i.e., microcline> orthoclase>
plagioclase; Fig. 1 in Blatt, 1967b; James et al., 1981; Velbel, 1993).
Although under active leaching Na+ emigration rate from plagioclase
exceeds K+ emigration rate from orthoclase, cases in which K-feldspar
may weather faster than plagioclase as a function of microchemical
environment have long been documented in mature soils (e.g., Todd,
1968; Basu, 1985; Hinkley, 1996).

6.3. Carbonate vs. chert grains

Sands carried by the Congo River and by all of its studied tributaries
lack carbonate grains, although carbonate rocks are exposed ex-
tensively in the Atlantic Rise and in various parts of the Congo

Fig. 10. Tentative estimate of zircon mixing proportions across Bas-Congo.
Zircon UePb age data were amalgamated into group A (samples S5206 and
S5207 from the Congo River upstream of Malebo Pool), group B (samples S5212
and S5213 from the Bundi and Mpozo tributaries), and group C (samples S4899,
S5115, and S5215 from the trunk river at Boma and downstream). The least
common multiple for the number of grains in A and B is N=39,273. To create a
synthetic mixture F (e.g., 23% of A with 77% of B), we combined F×N/n (A)
copies of A with (100-F)×N/n (B) copies of B. We measured the Kolmogorov-
Smirnov (KS) dissimilarity (Vermeesch, 2018b) between this synthetic mixture
and sample C. Finally, the previous step was repeated for different mixing
proportions until the KS dissimilarity was minimised. This occurred for
F=57% of A with 43% of B, with a bootstrapped confidence interval of
+0.17/−0.18%.
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catchment upstream (Delpomdor and Préat, 2015; Delpomdor et al.,
2015). Carbonate rock fragments were thus potentially produced in
Bas-Congo, but dissolved completely probably because of high pCO2
levels either in soils or river waters (Stumm and Morgan, 1996: p. 188ff;
Karim and Veizer, 2000). Conversely, chert grains eroded from chert-
bearing layers intercalated within the several carbonate intervals of the
Cataractes Group (Cailteux et al., 2015) are common in Kwilu sand
(Fig. 7C). These observations highlight the high durability of chert
grains and, conversely, the solubility of carbonate grains in hyper-
humid climate.

6.4. Mafic detritus

Thick metabasalt and amphibolite of early Neoproterozoic (Tonian)
age are exposed along the West Congo Belt from northernmost Angola
to Gabon (“Roches vertes de Gangila” of Tack, 1979; Nemba Group of
Djama et al., 2018). These rocks are drained extensively by the Bundi
River in Bas-Congo (Fig. 6C), and partly by the Loemé River in the
Republic of Congo (Fig. 6A). Bundi sand is in fact distinguished from all
of the other studied sediments by their relatively high amount of pla-
gioclase and occurrence of metabasite rock fragments (8% and 1% of
framework grains respectively), and by the rich tHM suite consisting
almost entirely of epidote (6% of framework grains) with minor acti-
nolite and zircon. Chemical analyses, however, fail to reveal major
supply from mafic rocks. Ti is relatively high and the Eu anomaly only
mildly negative (Eu/Eu* 0.89), but elements such as Fe, Mg, Sc, V, Cr,
and Ni all have concentrations less than half of UCC values. Metabasite
detritus is negligible in Loemé sand, where epidote represents only 8%
of the poor tHM suite. These observations suggest that mafic detritus is
weathered selectively, but does not undergo complete breakdown, in
soil profiles developed on the Atlantic Rise.

6.5. Heavy minerals

The durability of rock-forming minerals at the conditions met at the
Earth's surface is classically considered to follow in reverse the order of
crystallization from high-temperature melts indicated by the Bowen
series (i.e., olivine< pyroxene< amphibole; biotite<muscovite;
plagioclase<K-feldspar< quartz; Goldich, 1938; Lasaga, 1984). Al-
though expected to decrease with increasing polymerization of silica
tetrahedra from nesosilicates and inosilicates to phyllosilicates and
tectosilicates, vulnerability to weathering may vary widely among si-
licates having the same degree of tetrahedral connectedness. Among
nesosilicates, where there is no corner-sharing among silica tetrahedra,
the durability series olivine< garnet< staurolite< kyanite<
andalusite< sillimanite< zircon is determined by the increasing
strength of chemical bonds between non-tetrahedral cations and
structural oxygen (Velbel, 1999).
The tHM suite of Congo sand is dominated by durable zircon,

tourmaline and rutile, and upstream of Malebo Pool no other trans-
parent heavy mineral represents> 10 tHM%. In all of the studied sand
samples, about one third of transparent heavy minerals are corroded
but two-thirds appear as relatively unweathered, and deeply etched and
skeletal grains are rare. Etched pits are best displayed in amphibole
grains, where weathering develops preferentially along cleavage planes
(Velbel, 2007). Corrosion is visible on ~50% of staurolite grains, on
40–45% of amphibole, garnet and epidote grains, on 25–35% of kya-
nite, pyroxene and andalusite grains, and on<20% of tourmaline,
zircon, and rutile grains. Possible reasons why these surviving heavy-
mineral species display a relatively limited degree of surface corrosion
are discussed in Section 7.4 below.

6.6. Zircon

Although zircon accounts for more than a third of the tHM suite in
Congo sand, zirconium is less than half relative to the UCC standard in

many analysed samples (Table 2). Zr concentration, however, varies
over one full order of magnitude, being as high as 497 ppm in the
Kinshasa sample having the same grain size (~2.5 ϕ) as the three
lowermost-course and estuary samples where Zr is only 42–86 ppm. In
trunk-river sand, which as a first approximation can be considered to
have the same provenance through Bas-Congo, Zr concentration cor-
relates quite well with the Z/(Z+T) ratio (r=0.95, sign. Lev. 0.1%).
This parameter is introduced here as an index of hydraulic sorting,
being zircon (Z; 4.6–4.7 g/cm3) much denser than almost equally dur-
able tourmaline (T; 3.03–3.25 g/cm3). We conclude that the Kinshasa
sample, where the zircon/tourmaline ratio reaches 5.7 versus
1.9 ± 1.4 in the other 10 samples, represents a semiplacer lag enriched
in zircon by selective removal of less-dense settling-equivalent grains
(Komar, 2007; Garzanti et al., 2009).
Besides such local hydraulic-sorting effects, Zr concentration is ty-

pically very low in Congo sand (e.g., 68 ppm in Congo bedload down-
stream of the Ubangui confluence; table 5 in Dupré et al., 1996) as in
quartz-rich sand generated along the western branch of the East African
rift where weathering conditions are also extreme (Zr 17–135 ppm;
Garzanti et al., 2013a: p. 572–573). Sand of equatorial Africa is thus
characterized by high SiO2 and low Zr. The Si/Zr ratio in Congo River
sand is higher than in the UCC standard by factors mostly between 2
and 5 (3500–8000 vs. 1620; Table 2). Quartz, therefore, is proved to
have resisted multiphase recycling and intense weathering in the hyper-
humid climate of equatorial Africa far better than zircon.
Corrosion of zircon starting from weak points such as inclusions or

zoning has long been observed to occur under strong alkaline leaching
during development of mature lateritic soil profiles (Carroll, 1953).
Weathering of zircon under acid pH conditions is documented to occur
in lateritic soils of central Gabon, induced by either chloride of marine
origin or organic acids (Colin et al., 1993). Old and U/Th-rich meta-
mictic zircons ultimately derived from Archean shields and character-
ized by disoriented isolated silica tetrahedra and a hydrous component
(Woodhead et al., 1991) may be particularly sensitive to selective
weathering, as long documented by experimental studies (Ewing et al.,
1982; Balan et al., 2001). This would explain why zircon grains yielding
Archean UePb ages represent only 9% of total detrital zircon in Congo
sand (Fig. 9) even though the cuvette centrale is surrounded by Archean
shields (Fig. 5).

7. The equatorial quartz sand factory

It is exceedingly difficult (Aitchison, 1986) to understand whether a
sand is strongly enriched in quartz because of extensive weathering and
breakdown of less stable components such as feldspar or because of
overwhelming enrichment in quartz grains recycled from quartzarenite
source rocks (Johnsson et al., 1988: p. 275; Basu, 2017: pp. 13–14). The
incongruent dissolution of feldspar in lateritic soils testifies to intense
weathering, but the kaolinite-rich fraction thus produced is separated
from sand bedload during fluvial transport, entrained in suspension,
and eventually segregated in floodplain and lagoonal mud or winnowed
offshore. Textural analysis can help to evaluate only grossly whether
dissolution or recycling is the prevailing mechanism leading to quartz
enrichment. Chemical data offer useful help, although chemical-
weathering indices are also dependent on source-rock lithology, hy-
draulic sorting, and grain size. Moreover, their calculation becomes
unrobust where the sand is nearly pure SiO2 with all other elements
reduced to very small amounts.

7.1. Where is pure quartzose sand generated?

The Rusizi and Malagarasi Rivers sourced from the western branch
of the East African rift and the Ubangui River draining the Congo craton
carry litho-quartzose or feldspatho-quartzose sands with amphibole,
kyanite, and epidote (Fig. 8). Congo River sand just upstream of Malebo
Pool, instead, is pure quartzose and consists almost entirely of
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monocrystalline quartz and durable heavy minerals. Among Bas-Congo
tributaries, pure quartzose sand is transported by the Nsele and Inkisi
Rivers, whereas Mbangala sand is quartzo-lithic metasedimentaclastic,
Bundi sand is litho-feldspatho-quartzose, and Mpozo sand quartz-rich
feldspatho-quartzose (Table 1). Trunk-river sand in Bas-Congo is pure
quartzose, but includes minor amounts of less durable components in-
dicating that contribution from lower-course tributaries is significant.
Forward mixing calculations (Garzanti et al., 2012) based both on the
integrated petrographic and heavy-mineral dataset and on geochemical
data are remarkably consistent with the estimate based on the age
spectra of detrital zircons (Fig. 10), suggesting that between 7% and
14% of total Congo bedload fed into the Atlantic Ocean is generated in
the Atlantic Rise of Bas-Congo.
In beaches and coastal rivers of northernmost Angola, less durable

components increase steadily southward, from the estuary to ~20 km,
~40 km, and≥70 km south of the mouth (Garzanti et al., 2018a).
North of the mouth, pure quartzose composition characterizes beaches
and coastal rivers of the Republic of Congo and Gabon, although fine-
grained beach sand may be quartzose with common K-feldspar. Petro-
graphic data are corroborated by chemical data, indicating notably
lower SiO2 in Rusizi and Malagarasi sands than in Congo sand just
upstream of Malebo Pool. SiO2 decreases slightly across Bas-Congo, and
from the estuary to beaches and coastal rivers of northernmost Angola
~40 km and≥70 km south of the mouth. SiO2 content is very high in
beaches and coastal rivers of the Republic of Congo and Gabon
(Table 2).
Geomorphological and climatic conditions strong enough to effec-

tively destroy all minerals excepting durable quartz, zircon, tourmaline
and rutile, therefore, are not met in the northern and eastern peripheral
parts of the huge Congo River catchment, including the northern divide
with the Sahel-Saharan region and the western branch of the East
African rift. They do not occur in Bas-Congo either, nor in the hinter-
land of coastal Angola to the south, but they are met in the cuvette
centrale and along the equatorial Atlantic coast of Africa to the north.
The “quartz factory” is thus confined to the central part of the Congo
catchment and to equatorial regions where rainfall is most intense
(Fig. 1B).

7.2. How is pure quartzose sand generated?

Vast amounts of pure quartzose sand are stored in the cratonic in-
teriors of most low-latitude continents. Climatic conditions reigning at
present do not necessarily exert a fundamental control, because ex-
amples include not only humid to hyper-humid regions of South
America drained by the Orinoco, Amazon, Paranà and Uruguay Rivers
(e.g., Johnsson et al., 1988; Fig. 6 in Garzanti, 2019) but also semiarid
to hyper-arid regions of Africa and Arabia occupied by the Mega-Ka-
lahari, Sahara, Great Nafud, and Rub’ al Khali deserts (Muhs, 2004;
Garzanti et al., 2014a, 2017b). Large reservoirs of pure quartzose sand
were common also in the past, such as the vast area extending during
the Cambro-Ordovician across northern Gondwana from Oman to
Mauritania (Burke, 1999; Avigad et al., 2005) and in Laurentia as well
(Dott, 2003). This has notably influenced the way of thinking of sedi-
mentary petrographers, who have traditionally considered pure quart-
zose sand as the standard product of prolonged mechanical abrasion
and/or chemical weathering on relatively stable continental blocks
(orthoquartzite of Krynine, 1941; quartzarenite of Folk, 1980: p. 139;
craton interior subprovenance of Dickinson, 1985). Moreover, it con-
tributed to the general but fallacious belief that sand is destined to
improve its “maturity” through time (Folk, 1951; Pettijohn, 1954;
Hubert, 1962). We may speculate, as cognitive neuroscience suggests
(Boyer, 2008; McCauley, 2011), that even such a sedimentological
version of the purity myth (Garzanti, 2017) may be nurtured by security
networks in our brain, that lead us to repel sources of impurity and
contamination (Douglas, 2003; Mann, 2005; Lawson, 2012) and to in-
dulge in the teleologic illusion that things are ultimately destined to

attain perfection (Popper, 1994).
The thorny issue that despite several attempts has not been clarified

thoroughly so far (Pettijohn et al., 1972: pp. 223–227; Dott, 2003) is
whether purity can be achieved exclusively by weathering and in which
climatic conditions. If not, then chemical attack during both weathering
and diagenesis inherited and integrated through multiple sedimentary
cycles is required. Krynine (1941: pp. 1915–1916) held that first-cycle
quartzarenites enriched in rounded tourmaline and zircon are a typical
product of “prolonged and intense chemical decay in peneplaned regions”,
when “after passage through beach or dune stages deposition proceeds on
flat surfaces” at the “beginning or end of a geosynclinal cycle”. Conversely,
Suttner et al. (1981: p. 1235) concluded that “only a rare, unique com-
bination of extreme conditions of climate (tropical), relief (low), and sedi-
mentation rate (slow) can give rise to first-cycle quartz arenites” and thus
“that the bulk of ancient quartz arenite is multicycle in origin”.
Franzinelli and Potter (1983), Potter and Franzinelli (1985) and

Johnsson et al. (1991) documented the occurrence of quartz-rich sand
in the Orinoco and Rio Negro catchments of subequatorial South
America. Johnsson et al. (1988) ascribed their generation to intense and
prolonged chemical weathering, either in the Andean retroarc basin
where largely orogenic detritus is temporary stored or in lowland parts
of the Guyana shield characterized by very low erosion and transport
rates. First-cycle sand generated from the elevated Guyana shield where
only Proterozoic granitoid gneisses are exposed, however, still contains
significant amounts of polycrystalline quartz, feldspars, and rock frag-
ments (Q84 F11 R5; Qp/Q 18%; P/F 14%; SiO2 93 ± 1wt%). Pure
quartzose sand occurs only in catchments where cover strata including
thick upper Proterozoic quartzarenite is exposed (Q97 F1 R2; Qp/Q
13%; P/F 88%; SiO2 97 ± 2wt%), and in the lowlands (Q99 F1 R0;
Qp/Q 6%; P/F 7%; SiO2 99 ± 4wt%; data after tables 3 and 4 in
Johnsson et al., 1991).
First-cycle sand generated entirely from granitoid or amphibolite-

facies gneissic rocks exposed in rift highlands of subequatorial Africa
contain more feldspar (up to 14%) and high-rank metamorphic lithics
(up to 8%) than Congo sand does. Plagioclase is still present, although
strongly depleted, and amphibole, sillimanite, staurolite, and andalusite
are common whereas garnet is almost completely weathered out (Q/
QFL 82–97%; Qp/Q 0–30%; Q/(Q+F) 81–99%; P/F 0–68%; ZTR
11–60; data after Garzanti et al., 2013a). Transformation of crystalline
bedrock into a pure quartz sand is thus advanced but by no means
carried out to completion, possibly not because of insufficiently intense
or prolonged pedogenesis but because in high-relief areas subject to
relatively rapid erosion fresher detritus may be contributed by land-
slides involving bedrock, fostered by concentrated rainfall during the
rainy season.

7.3. How pure is pure?

The final answer about the possibility that pure quartzose sand or
quartzarenite can be generated during a single sedimentary cycle …
largely depends on the definition of quartzarenite! The conventional
limits indicated for the quartzarenite field vary in fact notably in the
literature, from wider (both feldspars and rock fragments< 10%QFR in
Gilbert, 1954, Dott, 1964, and Johnsson et al., 1991; ≈ quartzose sand
of Garzanti, 2019) to narrower (both feldspars and rock fragments<
5%QFR in Folk, 1954 and Franzinelli and Potter, 1983) and narrowest
(Q > 95%QFR in Folk, 1980 and Dott, 2003; ≈ pure quartzose sand of
Garzanti, 2019). Moreover, purity depends on grain size as well,
medium and coarser-grained quartzarenites being commonly inter-
layered with finer-grained feldspatho-quartzose sandstones and silt-
stones (Odom et al., 1976; Dott, 2003: p. 390).
Many geological problems are blurred by semantic and scale issues,

and this one is another example. Instead of “are first-cycle quartzarenites
possible?” (Dott, 2003: p. 392) we may ask “how quartz-rich can a sand
shed entirely from granitoid or gneissic basement be?”. The problem is
scale-dependent and must be tackled in small modern rivers (“first-
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order sampling scale” of Ingersoll et al., 1993) draining granitoid or
gneissic rocks exclusively (e.g., von Eynatten et al., 2016). The study of
large rivers such as the Congo can provide an only qualitative, or at best
semi-quantitative answer, because first-cycle and polycyclic detritus are
invariably mixed in large proportions in huge catchments including vast
lowland areas. Because quartz-rich sandstones have high sand-genera-
tion potential, their supply of recycled quartz grains may be relevant
even where their exposure areas are relatively small and erosion rates
moderate.
These lines of reasoning imply that no ancient quartzarenite can be

safely considered as entirely first-cycle and exempt from recycling,
because complete absence of quartz-rich siliciclastic cover strata in both
highland and lowland parts of the sediment-routing system from source
to sink is an unlikely assumption. As a consequence, inferences on pa-
leoclimatic conditions leading to extensive weathering cannot be
drawn, also because selective dissolution of unstable grains may be
markedly enhanced after deposition during burial diagenesis (McBride,
1985).
Although surrounded by Archean shields and Proterozoic orogenic

belts (Fig. 5), the Congo catchment hosts thick quartz-rich siliciclastic
units of various ages, which have been exposed to multiple episodes of
erosion and recycling throughout the Neoproterozoic (Frimmel et al.,
2006; Tait et al., 2011), Paleozoic (Tack et al., 2008; Linol et al.,
2015d), Mesozoic (Kadima et al., 2011; Agyemang et al., 2016), and
Cenozoic (Giresse, 2005; Guillocheau et al., 2015). Recycling of largely
Mesozoic and Cenozoic siliciclastic covers occurs extensively today all
across the cuvette centrale.
In Bas-Congo, recycling of Neoproterozoic and Paleozoic sandstones

fails to produce sand consisting exclusively of quartz and ZTR minerals.
Only Inkisi sand is pure quartzose (Fig. 7B), but its tHM suite is kyanite-
dominated. Although almost entirely recycled from the middle part of
the Cataractes Group (Fig. 6), Mbangala sand is quartz-poor and
dominated by low-rank metasedimentary lithic fragments (Fig. 7D).
River and beach sands in the Republic of Congo to the north are largely
derived from the same Neoproterozoic units (Affaton et al., 2016) and
dominantly consist of quartz associated with ZTR minerals, but kyanite,
staurolite, or even garnet still occur in minor amounts. In Gabon bea-
ches, coarse sand is pure quartzose but fine-grained sand may contain
common K-feldspar; although ZTR-dominated, tHM suites contain
garnet, staurolite, and minor amphibole, kyanite, apatite, and epidote.
Even a few clinopyroxene and orthopyroxene grains occur, probably
part of airborne tephra derived from volcanic centers of the Cameroon
Line.
The lesson that we learn here resonates with, and goes beyond the

statement in Suttner et al. (1981: p. 1235). The extreme weathering
conditions met in subequatorial climate, even in rift highlands of cen-
tral Africa where erosion rates are moderately high (Garzanti et al.,
2013a), do promote the generation of pure quartzose first-cycle sand.
But even a combination of intense weathering and extensive recycling
may not be enough to produce sand consisting of quartz and ZTR mi-
nerals exclusively, as observed in Bas Congo. Some feldspars (generally
mostly K-feldspar including microcline), and a few rock fragments (e.g.,
chert, felsic volcanic, or metasedimentary types) or moderately durable
heavy minerals (e.g., staurolite, kyanite; van Loon and Mange, 2007)
still occur invariably. The abundance of ultra-pure quartzarenite in the
rock record does not only require a certain amount of recycling, but
strongly suggests that post-depositional dissolution must have played a
decisive role in the final cleansing of all grains other than quartz and
ZTR minerals (McBride, 1985; van Loon, 2009).

7.4. Textural evidence of weathering

Textural analysis can only provide qualitative and often ambiguous
information to discriminate the effects of weathering versus recycling.
Surface textures such as frosting and rounding may be caused by dif-
ferent processes, including chemical dissolution and eolian abrasion,

and consequently quartz grains with rounded corners may be un-
decidedly indicative of desert environments, equatorial soil processes,
or multicyclicity (Crook, 1968; Dott, 2003: p. 390; Resentini et al.,
2018). Recycling is unmistakably indicated by the presence of quartz
grains with abraded syntaxial overgrowths and siltstone/sandstone rock
fragments, which according to Johnsson et al. (1988: p. 275) represent
“the only unambiguous criterion … of a multi-cycle origin for at least one
component of a sand”. Conversely, quartz grains with embayments and
etch pits or “runiquartz” with deep re-entrants infilled by clay inter-
spersed with Fe and Al oxides characterize the extreme weathering
conditions found in soils of hot-humid sub-equatorial highlands (Cleary
and Conolly, 1972; Schulz and White, 1999; Figs. 3B, D, and 4C in
Garzanti et al., 2013a; Fig. 7A–E in Garzanti et al., 2018a).
In the studied samples, strongly etched quartz grains are relatively

rare and corrosion features on transparent heavy minerals remarkably
less widespread than observed in equatorial highlands of the East
African rift (Andò et al., 2012). Because annual temperatures and
rainfall are similar, or even hotter and more intense in the Congo
catchment, these observations are rather unexpected, and may be as-
cribed either to selective mechanical destruction of deeply etched and
skeletal grains during long-distance fluvial transport or to dilution by
only slightly weathered grains recycled from siliciclastic rocks de-
posited during drier periods.

7.5. Insights from clay minerals

Weathering in hot-humid subequatorial climate results in the effi-
cient flushing of mobile elements from chemically unstable minerals
contained in parent rocks, and in the concentration of residual kaolinite
in laterite-type soils. Kaolinite is dominant (≥ 77% of the clay-mineral
assemblage) in all of the studied rivers in Bas-Congo, and reaches 98%
in Bundi mud despite the river drains wide exposures of Gangila me-
tabasalt (Dinis et al., 2019). Kaolinite is also dominant in offshore
samples, although illite and smectite are notably more abundant
(kaolinite 52–76%, illite 6–23%, smectite 11–28%: Gingele, 1992;
kaolinite 39–63%, illite 24–43%, smectite 9–16%: Dinis et al., 2019),
confirming the influence of sediment sources other than the Congo
River (van der Gaast and Jansen, 1984). A kaolinite content> 50%
characterizes mud on the Atlantic Ocean floors from offshore northern
Angola to the Gulf of Guinea, where fluvial contribution from intensely
weathered regions of subequatorial Africa mixes with illite-rich dust
blown by northeasterly trade winds from the Sahel (Petschick et al.,
1996). Instead, smectite may be derived from degradation of volcanic
ashes ejected from volcanic centers of the Cameroon Line.

7.6. Insights from chemical data

Chemical information greatly helps in the challenging attempt to
discriminate the effect of physical versus chemical processes on the
mineralogy of clastic sediments (Fig. 11). A useful criterion is provided
by the ratio between two chemical indices such as the CIA and the WIP,
which respond very differently to recycling (fig. 13 in Garzanti et al.,
2013a). The CIA is unaffected by silica concentration and measures the
degree of feldspar hydrolysis in granitoid rocks in situ, ranging from 50
where feldspars are unweathered to 100 where they are transformed
into a pure kaolinite residue by complete leaching of mobile elements
(Nesbitt and Young, 1982). Sediments however, are more complex
mixtures than granite grus, and the CIA may range from as low as
20–30 in pure basalticlastic sand to as high as 65–80, even in the ab-
sence of weathering, in mud rich in illite and/or smectite or in slate
sand (von Eynatten et al., 2012; Garzanti and Resentini, 2016). Instead,
the WIP decreases steadily, even in the absence of weathering, by
simple dilution of alkali and alkaline-earth elements where quartz is
progressively added to the sediment. The relationships between the CIA
and the WIP (Fig. 11B), and between the concentration of mobile alkali
and alkaline-earth metals and silicon (Fig. 11C) or aluminium
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(Fig. 11D), highlight the effect of intense weathering for clay and silt,
whereas the effect of recycling is overwhelming for sand. This confirms
and expands on the observations made on sediments from Angola in the
south (Dinis et al., 2017).

7.7. Unreliability of mineralogical indices of alteration

Chemical indices such as the CIA may provide misleading in-
formation on weathering conditions when applied to siliciclastic sedi-
ments. This is because the concentration of chemical elements in a se-
diment sample directly reflects its mineralogical composition, which
depends primarily on several factors other than weathering, including
provenance, grain size, and hydraulic sorting (e.g., Borges et al., 2008;
Garzanti et al., 2010, 2011; von Eynatten et al., 2012, 2016). The ex-
istence of multiple controls on sediment mineralogy implies that mi-
neralogical ratios are unreliable proxies for weathering intensity.
One emblematic example is the so called “Mineralogical Index of

Alteration” MIA=Q/(Q+F)*100, based on the relative proportions
between quartz and feldspar as determined by either X-ray diffraction
(Rieu et al., 2007) or petrographic point-counts (Hessler et al., 2017).
The Q/F ratio, a parameter long demonstrated to increase with sedi-
ment grain size (Odom et al., 1976; McBride et al., 1996; Sciunnach and
Garzanti, 1996; Garzanti et al., 2003; Dott, 2003), can hardly be turned
into an index of weathering by calling it “MIA”. The weakness of pa-
leoclimate inferences drawn from such a parameter (e.g., Liivamägi
et al., 2015; Hunger et al., 2018) is readily seen when the same max-
imum “MIA” value of ~100 characterizes modern fluvial sand

generated in the hyper-humid Congo cuvette and dune sand accumu-
lated in the hyper-arid Sahara and Arabian deserts (Muhs, 2004;
Garzanti et al., 2013c). Climatic conditions cannot be determined di-
rectly by mineralogical parameters.

8. Conclusions

The Congo is the largest big river on Earth that carries pure quart-
zose sand to the ocean. Although difficult to access, its huge catchment
provides an unexcelled setting in which to investigate the tectonic,
geomorphological, climatic, and chemical conditions leading to the
generation of pure quartzose sand. In this article we put to test the
diverse criteria and available tools used to discriminate the relative
effectiveness of weathering and recycling. The following conclusions
are drawn:

1. modern river sands in the upper Congo catchment and in Bas-Congo
are quartz-rich, but pure quartzose sand is generated only in the
cuvette centrale (Fig. 8). Independent calculations based on the in-
tegrated petrographic/heavy-mineral dataset, on geochemical data,
and on zircon-age spectra converge to suggest that between 7% and
14% of bedload supplied to the Atlantic Ocean is generated in Bas-
Congo, reflecting rapid incision of river channels into the recently
uplifted Atlantic Rise (Fig. 4);

2. quartz is enriched relative to all other minerals including zircon,
probably because U-rich zircon grains derived from old Archean
cratons have been selectively weathered out during successive

Fig. 11. Discriminating the effects of weathering, recycling, and grain size. Theoretical trends are all calculated starting from the Upper Continental Crust standard
(UCC): the quartz-addition trend by progressively adding SiO2, and the weathering trend by progressively subtracting mobile metals while assuming Si and Al as
immobile. The grain-size trend is drawn parallel to empirical trends based on data from Alpine and Himalayan sediments (Garzanti et al., 2010, 2011, 2012). (A) The
Al2O3/SiO2 plot shows the superposed effects of grain size and quartz addition. Among samples plotting below the regression line (Al2O3=−0.45 SiO2+ 45),
Malagarasi sand and Bundi silt and clay are Fe-rich, reflecting occurrence of basaltic and metabasaltic source rocks. Luculu silt is also Fe-rich, whereas the Congo
estuary silt sample has high LOI. (B) The CIA/WIP plot readily reveals quartz recycling, which affects strongly the WIP but not the CIA (Garzanti et al., 2013a,
2013b). In Congo sand, the CIA is unstable because of low Al2O3 and the WIP is invariably very low, documenting strong quartz addition. (C, D) Both plots show the
dominant effect of weathering for mud and of quartz recycling for sand. Clay is affected only by weathering.
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sedimentary cycles, as suggested by their low percentage in modern
Congo sand (Fig. 9);

3. carbonate grains are absent in sands of the Congo River and of its
Bas-Congo tributaries even where carbonate rocks are exposed, in-
dicating complete dissolution either in soils or in river waters su-
persaturated with CO2;

4. grain-surface textures convey ambiguous information. Quartz grains
in Congo sand are mostly monocrystalline and largely well rounded
(Fig. 7A,F), which may have resulted from weathering, recycling, or
from a combination of both. Heavy-mineral suites are strongly de-
pleted, which may be ascribed to either extensive weathering or
recycling. The less durable surviving species only rarely appear to be
strongly etched, which may hint either at mechanical destruction of
skeletal grains during long-distance fluvial transport or at dilution
by recycling of siliciclastic rocks deposited during drier periods in
the past;

5. dominant kaolinite in Congo mud reflects extensive chemical
weathering in the Congo catchment, whereas the mineralogy of
offshore mud indicates mixing with wind-blown illite from the arid
Sahel and with smectite derived from alteration of tephra probably
ejected from volcanic centers of the Cameroon Line. Volcanic input
is testified in abyssal mud cored at both sides of the Congo canyon
by the presence of augitic clinopyroxene and orthopyroxene, locally
associated with oxy-hornblende and olivine;

6. geochemical data on Congo mud, and especially on the clay fraction,
reveal the prominent effect of weathering, which in Congo sand is
masked by quartz recycling (Fig. 11);

7. mineralogical indices such as the so-called MIA=Q/(Q+F)*100
cannot be used as weathering indices because sediment mineralogy
is controlled by several factors other than weathering, including
provenance, grain size, and hydraulic sorting.

As general provenance implications and contributions to the ever-
lasting debate on the origin of pure quartzose sand we conclude that:

1. no ancient quartzarenite can be safely considered as exempt from
recycling, because no major sediment-routing system is likely to lack
quartz-rich siliciclastic cover strata entirely from source to sink;

2. no ancient quartzarenite can be safely considered as produced by
extensive weathering if selective dissolution of less stable grains
during diagenesis cannot be ruled out;

3. first-cycle sand consisting of quartz and ZTR minerals exclusively
cannot be generated by chemical weathering alone in the atmo-
spheric and climatic conditions of the modern Earth;

4. the abundance in the rock record of sandstones consisting entirely of
quartz and ZTR minerals cannot be satisfactorily explained by ex-
tensive chemical weathering, by physical recycling, or even by both
combined. The complete breakdown of all other less stable minerals
requires diagenetic dissolution, which operates at higher tempera-
tures and over longer periods than weathering at the Earth's surface.
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