8 research outputs found

    Functional diversity of GIPs/MZT1 (Gamma-tubulin complex protein 3-Interacting Proteins/Mitotic spindle organiZing proTein1) proteins at the nucleo-cytoplasmic interface in Arabidopsis thaliana

    No full text
    Chez Arabidopsis, l’enveloppe nucléaire constitue un site de nucléation des microtubules à partir des complexes à gamma-tubuline. Conservées des plantes à l'Homme, les protéines GIPs/MZT1 ont été initialement découvertes comme partenaires d’AtGCP3. J’ai consacré ma thèse à la caractérisation moléculaire et fonctionnelle des AtGIPs et de leurs partenaires à l’interface nucléocytoplasmique. Mes résultats confirment l’appartenance des GIPs aux complexes à gamma-tubuline, et démontrent leur association entre elles et avec TSA1 (TonSoKu [TSK]-Associating protein 1) et l'histone centromérique CenH3. Les interactions génétiques entre les gènes GIPs, TSA1 et TSK révèlent des anomalies sévères à l'échelle de l'organisme, des cellules et des noyaux. Les mutants gip1gip2 démontrent une diminution de la cohésion des régions centromériques. L’ensemble de nos résultats suggère un rôle des AtGIPs dans un continuum nucléocytoplasmique inédit, la régulation de l'architecture nucléaire et du centromère.In Arabidopsis, the nuclear envelope is a nucleation center where gamma-tubulin complexes initiate the polymerization of microtubules. Conserved from plants to humans, GIPs/MZT1 proteins were initially discovered as AtGCP3 interacting partners. Our investigations were devoted to the molecular and functional characterization of AtGIPs and their associated proteins at the nucleocytoplasmic interface. We confirmed that AtGIPs are integral components of gamma-tubulin complexes, and showed that they interact with each other, TSA1 (TonSoKu [TSK]-Associating protein 1) and centromeric histone H3 (CenH3). Genetic interactions between GIPs, TSA1 and TSK reveal severe defects at the organism, cellular and nuclear scales. gip1gip2 mutants exhibit a decrease of centromeric and pericentromeric cohesion. Altogether, this is the first evidence for the role of a gamma–tubulin complex component in the structural maintenance of centromeric regions, and in defining nuclear morphology and architecture

    Marginal band microtubules are acetylated by αTAT1

    No full text
    International audienceThe discoid shape of resting platelets is maintained by a peripheral, circular bundle of microtubules called marginal band. Marginal band microtubules are acetylated on lysine 40 of the alpha-tubulin subunits. We have previously shown that the deacetylase HDAC6 is responsible for tubulin deacetylation in platelets and that the hyperacetylated state of the microtubules in HDAC6KO platelets correlates with faster activation/spreading kinetics, pointing to a regulatory role of this modification. So far, the question about the reverse enzyme, responsible for tubulin acetylation in platelets, has remained unanswered. Several enzymes have been described as having tubulin acetylation activity. Here we identify αTAT1 as the enzyme responsible for the acetylation of marginal band microtubules. We show that αTAT1 deficiency has only minor consequences for platelet production and function. A residual tubulin acetylation level in αTAT1 deficient platelet lysates suggests the presence of an additional tubulin-acetylating enzyme that is unable to acetylate marginal band microtubules

    An essential role for α4A-tubulin in platelet biogenesis

    Get PDF
    International audienceDuring platelet biogenesis, microtubules (MTs) are arranged into submembranous structures (the marginal band) that encircle the cell in a single plane. This unique MT array has no equivalent in any other mammalian cell, and the mechanisms responsible for this particular mode of assembly are not fully understood. One possibility is that platelet MTs are composed of a particular set of tubulin isotypes that carry specific posttranslational modifications. Although β1-tubulin is known to be essential, no equivalent roles of α-tubulin isotypes in platelet formation or function have so far been reported. Here, we identify α4A-tubulin as a predominant α-tubulin isotype in platelets. Similar to β1-tubulin, α4A-tubulin expression is up-regulated during the late stages of megakaryocyte differentiation. Missense mutations in the α4A-tubulin gene cause macrothrombocytopenia in mice and humans. Defects in α4A-tubulin lead to changes in tubulin tyrosination status of the platelet tubulin pool. Ultrastructural defects include reduced numbers and misarranged MT coils in the platelet marginal band. We further observed defects in megakaryocyte maturation and proplatelet formation in Tuba4a-mutant mice. We have, thus, discovered an α-tubulin isotype with specific and essential roles in platelet biogenesis
    corecore