9 research outputs found

    Synthesis and characterization of thorium, uranium and cerium oxide nanopar-ticles

    Get PDF
    We describe the synthesis of cerium, thorium and uranium oxide nanoparticles embedded in a mesoporous matrix as template in a kind of nanocasting technique. The solid matrix is used as a template to obtain and stabilize the actinide oxide nanoparticles. We apply high resolution transmission electron microscopy (HR-TEM) to show evidence of metal oxide incorporation into the matrix pores and analyze their structure. Measured interplanar distances and calculated lattice parameters for synthesized nanosized CeO2−x and ThO2 samples differ from their bulk crystalline counterparts. We obtain with our synthesis CeO2−x particles containing both Ce4+ and larger sized Ce3+. The lattice parameter for these ceria nanoparticles is found to be larger than the bulk value due to the presence of Ce3+ with its larger ionic radius. The presence of Ce3+ was established by means of high resolution X-ray emission spectroscopy (HRXES), applied to the investigation of nanoparticles for the first time. The ThO2 nanoparticles exhibit a decrease in interplanar distances, as one might generally expected for these nanoclusters. However, the lattice distance decrease for our particles is remarkable, up to 5%, indicating that contact with the surrounding silica matrix may exert a bond distance shortening effect such as through significant external pressure on the particle surface

    Late quaternary evolution of the Canakkale Strait region, Dardanelles, NW Turkey : implications of a major erosional event for the postglacial Mediterranean - Marmara sea connection.

    No full text
    Seismic and bathymetric data from the Canakkale Strait and its extensions onto the shelves of the Marmara and Aegean seas indicate that the strait was formed mainly by an erosional event. Four seismic units are observed on seismic profiles. The lower two of these (units 4 and 3) constitute the basement of a regionally widespread erosional unconformity (ravinement), which developed during marine isotope stage 2 (MIS 2). The two upper units (units 2 and 1), which overlie the ravinement surface, form a higher-order sequence. Sequence stratigraphic analysis indicates that units 2 and 1 deposited as lowstand and highstand systems tracts respectively, since the end of MIS 2. The transgressive systems tract is represented by a major erosional event which occurred throughout the Canakkale sill area when the Mediterranean-Marmara Sea connection and, hence, the Canakkale Strait was formed. The existence of the erosive Aarkoy Canyon along the shelf edge of the southern Marmara Sea demonstrates that the flow direction causing the erosion was from south to north, thus proving that it was produced by Mediterranean water flowing over the sill into the Marmara Sea basin

    Atomic Structure of Defects in Anion-Deficient Perovskite-Based Ferrites with a Crystallographic Shear Structure

    No full text
    Abstract: Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) \uc5, b = 3.9108(1) \uc5, c = 32.643(1) \uc5). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, \u393-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes

    Artificial construction of the layered Ruddlesden–Popper Manganite La2Sr2Mn3O10by reflection high energy electron diffraction monitored pulsed laser deposition

    Get PDF
    Pulsed laser deposition has been used to artificially construct the n = 3 Ruddlesden–Popper structure La2Sr2Mn3O10 in epitaxial thin film form by sequentially layering La1–xSrxMnO3 and SrO unit cells aided by in situ reflection high energy electron diffraction monitoring. The interval deposition technique was used to promote two-dimensional SrO growth. X-ray diffraction and cross-sectional transmission electron microscopy indicated that the trilayer structure had been formed. A site ordering was found to differ from that expected thermodynamically, with the smaller Sr2+ predominantly on the R site due to kinetic trapping of the deposited cation sequence. A dependence of the out-of-plane lattice parameter on growth pressure was interpreted as changing the oxygen content of the films. Magnetic and transport measurements on fully oxygenated films indicated a frustrated magnetic ground state characterized as a spin glass-like magnetic phase with the glass temperature Tg ≈ 34 K. The magnetic frustration has a clear in-plane (ab) magnetic anisotropy, which is maintained up to temperatures of 150 K. Density functional theory calculations suggest competing antiferromagnetic and ferromagnetic long-range orders, which are proposed as the origin of the low-temperature glassy state

    On the determination of transportation, range and distribution characteristics of Uranium-238, Thorium-232 and Potassium-40: a critical review

    No full text
    corecore