223 research outputs found

    Wetdeck slamming loads on a developed catamaran hullform – experimental investigation

    Get PDF
    Catamaran wetdeck slamming has been experimentally investigated using a servo hydraulic slam testing system. A series of controlled-speed water impacts was undertaken on a rigid catamaran bow section with two interchangeable centrebows. Entry into the body of water was at two fixed trim angles: 0° and 5°. The vertical velocity was varied from 3 to 5 m/s in 0.5 m/s increments. This study presents a new dataset of pressure distributions and slam forces on the arched wetdeck structure of catamaran vessels. The relationships between the peak force magnitudes, relative impact angle and vertical velocity are observed, with a small reduction in slam force for an amended centrebow. Limited pressure measurements along the archway were not found to be representative of wetdeck slamming loads

    No evidence for an association between <i>Clock</i> gene allelic variation and migration timing in a long-distance migratory shorebird (<i>Limosa lapponica baueri</i>)

    Get PDF
    The gene Clock is a key part of the Core Circadian Oscillator, and the length of the polyglutamine (poly-Q) repeat sequence in Clock (ClkpolyQcds) has been proposed to be associated with the timing of annual cycle events in birds. We tested whether variation in ClkpolyQcds corresponds to variation in migration timing in the bar-tailed godwit (Limosa lapponica baueri), a species in which individuals show strong annual consistency in their migration timing despite the New Zealand population migrating across a 5-week period. We describe allelic variation of the ClkpolyQcds in 135 godwits over-wintering in New Zealand (N.Z.) and investigate whether polymorphism in this region is associated with northward migration timing (chronophenotype) from N.Z. or (for 32 birds tracked by geolocator) after the primary stopover in Asia. Six Clock alleles were detected (Q(7)-Q(12)) and there was substantial variation between individuals (heterozygosity of 0.79). There was no association between ClkpolyQcds polymorphism and migration timing from N.Z. The length of the shorter Clock allele was related to migration timing from Asia, though this relationship arose largely from just a few northern-breeding birds with longer alleles. Other studies show no consistent associations between ClkpolyQcds and migration timing in birds, although Clock may be associated with breeding latitude in some species (as an adaptation to photoperiodic regime). Apparent relationships with migration timing could reflect latitude-related variation in migration timing, rather than Clock directly affecting migration timing. On current evidence, ClkpolyQcds is not a strong candidate for driving migration timing in migratory birds generally

    Experimental drop test investigation into wetdeck slamming loads on a generic catamaran hullform

    Get PDF
    A series of drop-test experiments was performed to investigate the hydrodynamic loads experienced by a generic wave-piercer catamaran hullform during water impacts. The experiments, which focus on the characterisation of the unsteady slam loads on an arched wetdeck, were conducted using a Servo-hydraulic Slam Testing System (SSTS) that allows the model to enter the water at a range of constant speeds up to 10 m/s. The systematic and random uncertainties associated with the drop test results are quantified in detail. The relationships between water-entry velocity and both slam force and pressure distributions are presented and discussed with a strong relationship between the slam force peak magnitudes and impact velocity being observed. In addition the three dimensionality of the water flow in these slam impact events is characterised

    Ambient temperature does not affect fuelling rate in absence of digestive constraints in long-distance migrant shorebird fuelling up in captivity

    Get PDF
    Pre-flight fuelling rates in free-living red knots Calidris canutus, a specialized long-distance migrating shorebird species, are positively correlated with latitude and negatively with temperature. The single published hypothesis to explain these relationships is the heat load hypothesis that states that in warm climates red knots may overheat during fuelling. To limit endogenous heat production (measurable as basal metabolic rate BMR), birds would minimize the growth of digestive organs at a time they need. This hypothesis makes the implicit assumption that BMR is mainly driven by digestive organ size variation during pre-flight fuelling. To test the validity of this assumption, we fed captive knots with trout pellet food, a diet previously shown to quickly lead to atrophied digestive organs, during a fuelling episode. Birds were exposed to two thermal treatments (6 and 24°C) previously shown to generate different fuelling rates in knots. We made two predictions. First, easily digested trout pellet food rather than hard-shelled prey removes the heat contribution of the gut and would therefore eliminate an ambient temperature effect on fuelling rate. Second, if digestive organs were the main contributors to variations in BMR but did not change in size during fuelling, we would expect no or little change in BMR in birds fed ad libitum with trout pellets. We show that cold-acclimated birds maintained higher body mass and food intake (8 and 51%) than warm-acclimated birds. Air temperature had no effect on fuelling rate, timing of fuelling, timing of peak body mass or BMR. During fuelling, average body mass increased by 32% while average BMR increased by 15% at peak of mass and 26% by the end of the experiment. Our results show that the small digestive organs characteristic of a trout pellet diet did not prevent BMR from increasing during premigratory fuelling. Our results are not consistent with the heat load hypothesis as currently formulated

    Periodic stellar variability from almost a million NGTS light curves

    Get PDF
    We analyse 829,481 stars from the Next Generation Transit Survey (NGTS) to extract variability periods. We utilise a generalisation of the autocorrelation function (the G-ACF), which applies to irregularly sampled time series data. We extract variability periods for 16,880 stars from late-A through to mid-M spectral types and periods between 0.1 and 130 days with no assumed variability model. We find variable signals associated with a number of astrophysical phenomena, including stellar rotation, pulsations and multiple-star systems. The extracted variability periods are compared with stellar parameters taken from Gaia DR2, which allows us to identify distinct regions of variability in the Hertzsprung-Russell Diagram. We explore a sample of rotational main-sequence objects in period-colour space, in which we observe a dearth of rotation periods between 15 and 25 days. This 'bi-modality' was previously only seen in space-based data. We demonstrate that stars in sub-samples above and below the period gap appear to arise from a stellar population not significantly contaminated by excess multiple systems. We also observe a small population of long-period variable M-dwarfs, which highlight a departure from the predictions made by rotational evolution models fitted to solar-type main-sequence objects. The NGTS data spans a period and spectral type range that links previous rotation studies such as those using data from Kepler, K2 and MEarth

    A benchmark JWST near-infrared spectrum for the exoplanet WASP-39 b

    Get PDF
    Observing exoplanets through transmission spectroscopy supplies detailed information about their atmospheric composition, physics and chemistry. Before the James Webb Space Telescope (JWST), these observations were limited to a narrow wavelength range across the near-ultraviolet to near-infrared, alongside broadband photometry at longer wavelengths. To understand more complex properties of exoplanet atmospheres, improved wavelength coverage and resolution are necessary to robustly quantify the influence of a broader range of absorbing molecular species. Here we present a combined analysis of JWST transmission spectroscopy across four different instrumental modes spanning 0.5–5.2 μm using Early Release Science observations of the Saturn-mass exoplanet WASP-39 b. Our uniform analysis constrains the orbital and stellar parameters within subpercentage precision, including matching the precision obtained by the most precise asteroseismology measurements of stellar density to date, and it further confirms the presence of Na, K, H2O, CO, CO2 and SO2 as atmospheric absorbers. Through this process, we have improved the agreement between the transmission spectra of all modes, except for the NIRSpec PRISM, which is affected by partial saturation of the detector. This work provides strong evidence that uniform light curve analysis is an important aspect to ensuring reliability when comparing the high-precision transmission spectra provided by JWST

    Environment, Migratory Tendency, Phylogeny and Basal Metabolic Rate in Birds

    Get PDF
    Basal metabolic rate (BMR) represents the minimum maintenance energy requirement of an endotherm and has far-reaching consequences for interactions between animals and their environments. Avian BMR exhibits considerable variation that is independent of body mass. Some long-distance migrants have been found to exhibit particularly high BMR, traditionally interpreted as being related to the energetic demands of long-distance migration. Here we use a global dataset to evaluate differences in BMR between migrants and non-migrants, and to examine the effects of environmental variables. The BMR of migrant species is significantly higher than that of non-migrants. Intriguingly, while the elevated BMR of migrants on their breeding grounds may reflect the metabolic machinery required for long-distance movements, an alternative (and statistically stronger) explanation is their occupation of predominantly cold high-latitude breeding areas. Among several environmental predictors, average annual temperature has the strongest effect on BMR, with a 50% reduction associated with a 20°C gradient. The negative effects of temperature variables on BMR hold separately for migrants and non-migrants and are not due their different climatic associations. BMR in migrants shows a much lower degree of phylogenetic inertia. Our findings indicate that migratory tendency need not necessarily be invoked to explain the higher BMR of migrants. A weaker phylogenetic signal observed in migrants supports the notion of strong phenotypic flexibility in this group which facilitates migration-related BMR adjustments that occur above and beyond environmental conditions. In contrast to the findings of previous analyses of mammalian BMR, primary productivity, aridity or precipitation variability do not appear to be important environmental correlates of avian BMR. The strong effects of temperature-related variables and varying phylogenetic effects reiterate the importance of addressing both broad-scale and individual-scale variation for understanding the determinants of BMR

    Very rapid long-distance sea crossing by a migratory bird

    Get PDF
    Landbirds undertaking within-continent migrations have the possibility to stop en route, but most long-distance migrants must also undertake large non-stop sea crossings, the length of which can vary greatly. For shorebirds migrating from Iceland to West Africa, the shortest route would involve one of the longest continuous sea crossings while alternative, mostly overland, routes are available. Using geolocators to track the migration of Icelandic whimbrels (Numenius phaeopus), we show that they can complete a round-trip of 11,000 km making two non-stop sea crossings and flying at speeds of up to 24 m s-1; the fastest recorded for shorebirds flying over the ocean. Although wind support could reduce flight energetic costs, whimbrels faced headwinds up to twice their ground speed, indicating that unfavourable and potentially fatal weather conditions are not uncommon. Such apparently high risk migrations might be more common than previously thought, with potential fitness gains outweighing the costs

    Planet Hunters NGTS: New Planet Candidates from a Citizen Science Search of the Next Generation Transit Survey Public Data

    Get PDF
    We present the results from the first two years of the Planet Hunters Next Generation Transit Survey (NGTS) citizen science project, which searches for transiting planet candidates in data from the NGTS by enlisting the help of members of the general public. Over 8000 registered volunteers reviewed 138,198 light curves from the NGTS Public Data Releases 1 and 2. We utilize a user weighting scheme to combine the classifications of multiple users to identify the most promising planet candidates not initially discovered by the NGTS team. We highlight the five most interesting planet candidates detected through this search, which are all candidate short-period giant planets. This includes the TIC-165227846 system that, if confirmed, would be the lowest-mass star to host a close-in giant planet. We assess the detection efficiency of the project by determining the number of confirmed planets from the NASA Exoplanet Archive and TESS Objects of Interest (TOIs) successfully recovered by this search and find that 74% of confirmed planets and 63% of TOIs detected by NGTS are recovered by the Planet Hunters NGTS project. The identification of new planet candidates shows that the citizen science approach can provide a complementary method to the detection of exoplanets with ground-based surveys such as NGTS

    HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V = 7.9) star unveiled by TESS

    Full text link
    We report the discovery of the 1.008-d, ultrashort period (USP) super-Earth HD 213885b (TOI-141b) orbiting the bright (V = 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 ± 0.6 M⊕ for this 1.74 ± 0.05 R⊕ exoplanet, which provides enough information to constrain its bulk composition – similar to Earth’s but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whose minimum mass of 19.9 ± 1.4 M⊕ makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed
    corecore