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Abstract
The gene Clock is a key part of the Core Circadian Oscillator, and the length of the polyglutamine (poly-Q) repeat sequence 
in Clock (ClkpolyQcds) has been proposed to be associated with the timing of annual cycle events in birds. We tested whether 
variation in ClkpolyQcds corresponds to variation in migration timing in the bar-tailed godwit (Limosa lapponica baueri), 
a species in which individuals show strong annual consistency in their migration timing despite the New Zealand popula-
tion migrating across a 5-week period. We describe allelic variation of the ClkpolyQcds in 135 godwits over-wintering in 
New Zealand (N.Z.) and investigate whether polymorphism in this region is associated with northward migration timing 
(chronophenotype) from N.Z. or (for 32 birds tracked by geolocator) after the primary stopover in Asia. Six Clock alleles were 
detected  (Q7‒Q12) and there was substantial variation between individuals (heterozygosity of 0.79). There was no association 
between ClkpolyQcds polymorphism and migration timing from N.Z. The length of the shorter Clock allele was related to 
migration timing from Asia, though this relationship arose largely from just a few northern-breeding birds with longer alleles. 
Other studies show no consistent associations between ClkpolyQcds and migration timing in birds, although Clock may be 
associated with breeding latitude in some species (as an adaptation to photoperiodic regime). Apparent relationships with 
migration timing could reflect latitude-related variation in migration timing, rather than Clock directly affecting migration 
timing. On current evidence, ClkpolyQcds is not a strong candidate for driving migration timing in migratory birds generally.

Keywords Clock · Polyglutamine · Circannual · Phenology · Migration · Bar-tailed godwit

Introduction

Long-distance migratory birds are presented with the annu-
ally repeating challenge of ensuring that a crucial life-history 
event, migratory departure from their over-wintering sites, 
is timed so that subsequent reproduction-related life-history 
events (e.g., courtship, mating and nesting) occur at appro-
priate times at far-distant locations (Both et al. 2006; Nussey 
et al. 2007). Because initiation of migration occurs at sites 
that may be thousands of kilometers away from the breeding 
sites (Jenni and Kery 2003; Both et al. 2006, 2010), con-
sistent migration timing (e.g., Conklin et al. 2013) depends 
strongly on a genetically influenced timing mechanism 
(Berthold and Querner 1981).

Avian migration timing is thought to be determined by 
inputs from an internal/intrinsic circannual clock interacting 
with responses to extrinsic, seasonally varying Zeitgebers, 
which at temperate latitudes is principally the seasonally 
changing photoperiod (Helm et al. 2009; Both et al. 2010; 
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Helm et al. 2013; Kölzsch et al. 2015; Majumdar et al. 
2015). The genetic and physiological mechanisms gener-
ating internal circannual clocks remain largely unknown 
(Rani and Kumar 2013; Evans et al. 2015; Majumdar et al. 
2015). In contrast, some genetic and physiological elements 
of the avian internal circadian clock used to measure sea-
sonally changing photoperiod can be deduced from their 
evolutionary and functional relationships with similar (i.e., 
homologous) elements in more experimentally accessible 
model organisms (Panda et al. 2002; Hardin 2005; Helfer 
et al. 2006). Although behaviors are typically complex traits 
with continuous distributions of phenotypic values and pre-
sumably polygenic control (Tschirren and Bensch 2010; 
Liedvogel and Lundberg 2014), genetic polymorphisms 
can be directly linked with behavioral variation in natural 
populations (Easton et al. 2003; Fidler et al. 2007; Korsten 
et al. 2010; Tschirren and Bensch 2010; Caprioli et al. 2012; 
Mueller et al. 2013; Wetzel et al. 2015).

The core circadian oscillator (CCO) in birds and mam-
mals is generated by a number of genes/proteins that work 
together to form an oscillatory transcription/translation feed-
back loop (Hastings 2000; Bell-Pedersen et al. 2005; Albre-
cht 2012; Cassone 2014; Hurley et al. 2016). One critical 
element of the CCO is the gene Clock (Circadian Locomotor 
Output Cycles Kaput) encoding one half of a heterodimeric 
transcription factor CLOCK/BMAL1, a transcription-acti-
vating complex that regulates the expression of several CCO 
genes (e.g., Period, Cryptochrome) (Zhang and Kay 2010; 
Cassone 2014) in addition to some ‘output’ genes (Chong 
et al. 2000; Ripperger et al. 2000; Yoshitane and Fukada 
2009; Reischl and Kramer 2011; Rey et al. 2011).

An evolutionarily conserved feature of CLOCK pro-
tein orthologs is a polyglutamine (poly-Q) repeat sequence 
located toward the C-terminus, which may affect the binding 
affinity and thus its functionality as a transcription factor 
(Gemayel et al. 2015). Variation in the length of Clock-
polyQ has consequences that can be observed at the behav-
ioral level. Specifically, experimental studies of Drosophila 
melanogaster and mice showed that variation in the length 
of ClockpolyQ resulted in altered circadian behavior (King 
et al. 1997; Darlington et al. 1998). Although the exact 
mechanism by which ClockpolyQ variation links mechanis-
tically with timing-related traits is unclear, variation in the 
glutamine repeat length could be a source of quantitative 
variation of a phenotype (i.e., behavior) within a population 
(Darlington et al. 1998; Saleem et al. 2001; Resuehr et al. 
2007; Hands et al. 2008).

Variation in ClockpolyQ in birds has been mostly stud-
ied in relation to latitudinal clines across populations or 
breeding phenology traits (e.g., laying date) (Johnsen et al. 
2007; Liedvogel et  al. 2009; Bourret and Garant 2015; 
Zhang et al. 2017). Analogous studies in fish and flies sup-
port the idea that Clock allelic variation is associated with 

latitudinal adaptations (Costa et al. 1992; Leder et al. 2006; 
O’Malley and Banks 2008). It has been suggested that the 
effect of Clock on breeding timing may be via its effect on 
the hypothalamus-pituitary-gonad (HPG) endocrine axis 
(Zhang et al. 2017). Clock has also been suggested to relate 
to migration timing or distance in birds, but results have 
been variable. Some studies support an association (Johnsen 
et al. 2007; Bourret and Garant 2015; Saino et al. 2015), 
others do not (Chakarov et al. 2013; Kuhn et al. 2013; Peter-
son et al. 2015; Bazzi et al. 2017) and some found a lack 
of Clock gene poly-Q (ClkpolyQcds) polymorphism in the 
species studied (Bazzi et al. 2015, 2016b). In this study, we 
investigated whether variation in ClkpolyQcds genotype is 
associated with variation in timing of individual bar-tailed 
godwits (Limosa lapponica baueri, hereafter ‘godwits’) on 
northward migration from New Zealand to Alaska.

Godwits that over-winter in Australasia are long-distance 
migratory shorebirds that present an extreme example of 
the importance of integrating the timing of migration with 
the timing of breeding far away (Conklin et al. 2010). The 
annual migration schedule of godwits that over-winter in 
N.Z. consists of three non-stop flights over open ocean: 
departing N.Z. in austral late summer/early autumn god-
wits fly ~ 10,000 km to feeding grounds in coastal east 
Asia, followed by a stopover of 4–7 weeks and then a flight 
of ~ 7000 km to western and northern Alaska to breed, and 
then, departing in the boreal autumn, a > 11,500 km flight 
directly across the Pacific Ocean to N.Z. (Gill et al. 2009; 
Battley et al. 2012). Given the short temporal window for 
successful breeding in Alaska (Meltofte et  al. 2007), it 
is expected that initiation of all three migratory flights is 
under strong selection pressure with severe penalties for 
inappropriate timing (Drent et al. 2003; Conklin et al. 2013; 
Visser et al. 2015). Godwits depart N.Z. over an approxi-
mately 5-week period in austral late summer/early autumn 
(late February–early April) but individual godwits typi-
cally depart within the same week each year (Battley 2006; 
Conklin and Battley 2012; Conklin et al. 2013). Similar 
inter-individual variation in departure times from the Asian 
stopover sites grounds has also been reported albeit from a 
smaller dataset (Conklin et al. 2013). Correlations between 
departure times from N.Z. or Asia and ultimate breeding 
latitude indicate that the inter-individual variation in migra-
tion dates is correlated with variation in the spring thaw 
across the Alaskan breeding range, with northern-breeding 
godwits migrating and breeding later than southern-breeding 
birds (Conklin et al. 2010). Thus, godwits appear to offer an 
excellent opportunity to test the association between genetic 
variation and migration timing across an entire migration.
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Materials and methods

Collection and storage of godwit blood samples

Godwits were captured by cannon-net or mist-net at 
two sites on the North Island (Firth of Thames, 37.17°S 
175.32°E, n = 13; Manawatu River estuary, 40.47°S, 
175.22°E, n = 68) and at one site on the South Island (Cat-
lins Coast, 46.48°S, 169.70°E, n = 54) of N.Z. Birds were 
banded, measured, aged (based on plumage characteris-
tics) and given a unique combination of color bands or an 
engraved 3-letter leg flag to allow individual recognition 
in the field. Juveniles (age 1) and adults (age 3 +) can 
generally be identified; immatures (age 2 or 3) are more 
difficult and often impossible to distinguish, in which case 
they are recorded as immatures. Most birds in our sample 
were adults (n = 123): one was banded as a juvenile, 10 as 
immatures and one was of uncertain age. Potentially 12 
birds in the sample included their first northward migra-
tion (which generally occurs at age 3 or 4; P.F.B. and 
J.R.C, unpubl. data). Blood samples (ca. 50.0 μl) were 
collected from the metatarsal or brachial vein using micro-
haematocrit capillary glass tubes and preserved in either 
96% (v/v) ethanol or Queen’s Lysis buffer (QLB) (10 mM 
Tris, 10 mM NaCl,10 mM EDTA, 1.0% (w/v) n-lauroyl-
sarcosine, pH 8.0) (Seutin et al. 1991) before long-term 
storage at ambient temperature. All sampling was carried 
out under both N.Z. Department of Conservation (DOC) 
permits and Animal Ethics Committee approval from Mas-
sey University (#07/163, # 12/90) and the University of 
Otago (#66/03).

Determination of individual chronophenotypes

Departure dates of godwits leaving N.Z. were recorded 
based on daily observations of individually marked (color-
banded or engraved-flagged) godwits at the study sites 
between 2004 and 2016 (Online resource 1). Fieldwork 
at the Firth of Thames was conducted in 2004–2006 and 
2014–2016, at the Manawatu Estuary from 2008–2016 and 
at the Catlins Coast in 2013–2016. At the Manawatu Estu-
ary where the population is small (ca. 200–280 birds per 
year), virtually exact departure information (i.e., 0–1 days 
of uncertainty) could be determined from direct observa-
tions of departing flocks, daily records of marked birds and 
detailed flock counts (Conklin and Battley 2011; Battley 
and Conklin 2017). At the Catlins Coast (population ca. 
400 birds), daily color-band readings combined with flock 
counts were used to infer migration dates of individuals, 
while at the Firth of Thames (population > 3000 birds), the 
last observation of repeatedly observed individuals was 

taken to represent the migration timing (with some direct 
observations of departing birds). In total, we have data 
for 135 birds with 426 migration dates across the study 
period. A subset of those birds was also tracked via geolo-
cator through their Asian stopover in 2008–2009 (using 
MK14 geolocators, British Antarctic Survey, UK) and 
2013–2014 (MK4093, Biotrack, UK and Intigeo-C65 K, 
Migrate Technology, UK) (32 birds with 41 observations, 
Online resource 2). We used conductivity data (wet-dry 
transitions) to determine departure date from the stopover 
(Battley and Conklin 2017). We determined general breed-
ing region from the light data using BAStrack software 
for British Antarctic Survey loggers (Fox 2010), Geolight 
(Lisovski and Hahn 2012) for Biotrack loggers and the 
R package PolarGeolocation (Lisovski 2018) for Migrate 
Technology loggers. As there is considerable uncertainty 
around estimates of high-latitude positions, especially 
for geolocators that do not record continuous light levels 
(MK14 and MK4093), we grouped breeding regions into 
‘north’ (Seward Peninsula and north) and ‘south’ (Yukon-
Kuskokwim Delta), i.e., a cutoff at Latitude 64°N). This 
division corresponds to regions that differ in their light 
regimes (northern birds have no discernible darkness at 
night; Conklin 2011).

DNA‑based sex determination

Godwits were molecularly sexed using methodology of 
Fridolfsson and Ellegren (1999) which relies on an intron 
within the Chromo Helicase DNA-binding (CHD) gene 
differing in length between the CHD alleles carried on the 
Z (CHD-Z, ~ 0.6 kb) and the W (CHD-W, ~ 0.5 kb) chro-
mosomes. Thus, male bird gDNA (ZZ) amplifies a sin-
gle band and female gDNA (ZW) either two bands or, in 
some cases as ours, a single band shorter than that of males 
(Fridolfsson and Ellegren 1999). Godwit gDNA was used 
as the template for the PCR using the primer pair: 2550F 
(5′–GTT ACT GAT TCG TCT ACG AGA–3′) and 2718R 
(5′–ATT GAA ATG ATC CAG TGC TTG–3′) (Fridolfsson and 
Ellegren 1999). The PCR mix consisted of: 1 × MyTaq™ 
HS Mix (Cat. No. BIO25045, Bioline, London, UK), for-
ward primer (2550F) (0.2 µM), reverse primer (2718R) 
(0.2 µM), 0.5 µg/µl non-acetylated bovine serum albumin 
(BSA; Cat. No. B8667, Sigma-Aldrich, St. Louis, USA) 
with a final volume of 10.0 µl. Thermocycling parameters 
consisted of: 94 °C/2 min; 94 °C/2 min; 60 °C/40 s, ramp-
ing +1 °C/s to 72 °C, 72 °C/40 s, 10 cycles; 94 °C/30 s, 
50 °C/30 s, 72 °C/35 s, 30 cycles; 72 °C/5 min.; hold at 
4 °C. Amplification products were separated by agarose gel 
(2.5% (w/v)) electrophoresis and visualized by staining in 
ethidium bromide before photographing on a UV transil-
luminator (ChemiDoc™ MP, Imaging System, BioRad, 
Hercules, USA). Samples of gDNA generating a single 
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amplicon ~ 0.5 kb were interpreted as male and a larger 
amplicon ~ 0.6 kb as female. Our N.Z. dataset comprises 70 
females and 65 males, and our Asian dataset comprises 17 
females and 15 males.

Genotyping of the ClkpolyQcds locus

The godwit ClkpolyQcds genotyping procedure followed 
Johnsen et al. (2007) in first amplifying, cloning into plas-
mids and sequencing a range of ClkpolyQcds alleles that 
then provided templates to generate size standards for sub-
sequent precise determination of ClkpolyQcds allele lengths/
genotypes. Godwit ClkpolyQcds sequences were amplified 
using the generic avian ClkpolyQcds primers: forward 
GenClkFor: 5′–TTT TCT CAA GGT CAG CAG CTTGT–3′ 
and GenClkRev reverse: 5′–CTG TAG GAA CTG TTG YGG 
KTGCTG–3′ (Johnsen et al. 2007) with reaction condi-
tions 1x BioMix (BioLine, London, UK), 0.8 µM both for-
ward and reverse primers, 1.0 µL gDNA, double-distilled 
water to a final volume of 50.0 µL with thermocycling con-
ditions: 94 °C/2 min; 94 °C/30 s, 60 °C/30 s, 72 °C/60 s, 
10 cycles; 94 °C/30 s, 64 °C/30 s, 72 °C/60 s, 30 cycles; 
72 °C/7 min; hold at 15 °C. The resulting PCR products 
were visualized on an ethidium bromide-stained agarose 
gel [2.0% (w/v)], extracted using a commercial kit (Zymo-
clean™ Gel DNA Recovery Kit, Zymo Research, Irvine, 
USA), ligated into the T-tailed cloning vector pGEM-Teasy 
(Promega, Madison, USA) and transformed into competent 
DH5α E. coli cells. Plasmids were purified (High Pure Plas-
mid Isolation Kit, Roche Diagnostics, Penzberg, Germany) 
and their inserts sequenced by an external contractor (Mas-
sey Genome Service, Massey University, N.Z.). From six 
godwit genomic DNA samples, two distinct ClkpolyQcds 
allele sequences were found and denoted ClkpolyQ9 and Clk-
polyQ11 based on variation in the length of a poly-glutamine 
(poly-Q) coding region (Fig. 1). Using the ClkpolyQ9 and 
ClkpolyQ11 allele sequences godwit-specific ClkpolyQcds, 
PCR primers were designed for further genotyping, for-
ward primer LimClkFor: 5′–TGT AAA ACG ACG GCC AGT 
TGG GAC AGG TGG TGA CGG CTTAC–3′; reverse primer 

Fig. 1  Alignment of predicted protein sequences corresponding to the 
five godwit ClkpolyQcds alleles sequenced in this study. An exon of 
the godwit Clock gene ortholog containing a poly-glutamine (poly-
Q) coding region was amplified and sequenced. Allele names denote 
the number of glutamine (Q) residues predicted to be encoded in a 
variable length region (shaded). Glutamine residues encoded by CAA 
are single underlined. All Qs depict glutamine residues encoded by 
the triplet CAG except for one encoded by CAA (single-underlined) 
found in the ClkpolyQ8 (KR653306). Positions of predicted protein 
identity are indicated by dots (•) with gaps introduced to the poly-
Q region to achieve alignment indicated by (-). GenBank accession 
numbers for the five allelic sequences are: ClkpolyQ8 (KR653306), 
ClkpolyQ9 (JN676984), ClkpolyQ10 (KU051417), ClkpolyQ11 
(JN676983) and ClkpolyQ12 (KU051418)

▸
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LimClkRev: 5′–GTT TCT GCT GAA CGG TGG TGAG–3′. 
The godwit ClkpolyQcds sequences correspond to coordi-
nates 63–85 and 217–200 of ClkpolyQ11 (GenBank acc. no.: 
JN676983). An 18 bp generic M13 ‘tag’ sequence (5′–TGT 
AAA ACG ACG GCC AGT –3′) was included on the 5′ end of 
LimClkFor to allow florescent labeling of amplicons using 
the three primer PCR strategy of Schuelke (2000). A 5′ ‘PIG 
tail’ sequence (5′–GTTT–3′) was included on LimClkRev 
in an effort to enhance consistency in amplicon size by pro-
moting the addition of 3′ A’s by the Taq DNA polymerase 
(Brownstein et al. 1996). Godwit ClkpolyQcds genotyping 
PCR mixes consisted of: 1x MyTaq™ HS Mix (cat. no. 
BIO25045, Bioline, London, UK), LimClkFor (0.2 µM), 
LimClkRev (0.6 µM), and a florescent dye-labeled generic 
M13-tag primer (5′–TGT AAA ACG ACG GCC AGT –3′) 
(0.6 µM) Schuelke (2000), with thermocycling conditions: 
94 °C/2 min; 94 °C/30 s, 59 °C/30 s, 72 °C/30 s, 15 cycles; 
94 °C/30 s, 54 °C (ramping +0.2 °C/s)/30 s, 72 °C/30 s, 
25 cycles; 72 °C/5 min; 60 °C/30 min; 15 °C/hold. Among 
20 godwit gDNA samples screened, six were identified that 
collectively displayed five different ClkpolyQcds length 
variant alleles, either in heterozygous or homozygous con-
ditions. Using the generic ClkpolyQcds primer pair of John-
sen et al. (2007) (i.e., GenClkFor and GenClkRev), the five 
different ClkpolyQcds allelic sequences were amplified and 
sequenced (Fig. 1). Five plasmids corresponding to the five 
ClkpolyQcds alleles ClkpolyQ8-12 were then used as tem-
plates for the PCR with primers LimClkFor and LimClkRev 
in combination with 6-FAM™ labeled M13 tag primer. 
The resulting amplicons were diluted and pooled to gener-
ate 6-FAM™ labeled standards for each of the five Clkpol-
yQcds alleles. To genotype the full set of godwits (n = 135), 
their corresponding gDNA samples were used as templates 
with the generic M13 tag primer labeled with either  VIC® 
(green) or NED™ (yellow). The samples sent to an external 
contractor (ABI3730 Genetic Analyzer, GeneScan™-500 
LIZ™ size standard, Massey Genome Service, Massey 
University, Palmerston North, N.Z.) for amplicon length 
estimations consisted of pools of: (1) the 6-FAM™ labeled 
standards (2) amplification products from one godwit gDNA 
labeled with  VIC® and (3) amplification products from one 
bird gDNA labeled with NED™. Peak Scanner™ v2.0 (Life 
Technologies, Carlsbad, USA) was used to view and analyze 
the electropherogram data.

In preliminary experiments, we found, as reported by 
Sutton et al. (2011), that the dye PET™ adds an apparent 
3 bp to the estimated length of a DNA fragment when 
compared with FAM™,  VIC® and NED™ labeling (data 
not shown). Therefore, only the dyes FAM™ (for the 
standards) and  VIC® and NED™ (for genotyping) were 
used in this study. Repeat genotyping of three gDNA sam-
ples with either  VIC® or NED™ labeled generic M13 tag 

primers returned the same genotype with examples of the 
genotyping electropherogram shown in Online Resource 
3. Therefore, it was concluded that genotypes generated 
using FAM™,  VIC® and NED™ labeled generic M13 tag 
primers could be combined and compared.

Statistical analyses

General parameters (He, Ho, Na, allele frequencies) 
were calculated for the pooled dataset using GENEAIEX 
v.6.501 (Peakall and Smouse 2012). We tested for depar-
ture from Hardy–Weinberg equilibrium (HWE) using 
ARLEQUIN v.3.5 (Excoffier et al. 2005) with 1,000,000 
steps in Markov chain and 1,000,000 dememorization 
steps. We checked for normality of poly-Q unit frequency 
distributions for each sex with a Shapiro test. Differ-
ences between sexes in allele length for either locus were 
assessed with a t test. ClkpolyQcds genotype frequencies 
between sexes were compared with a Kruskal–Wallis test 
(non-parametric). Since we do not have a priori knowledge 
about the genotype–phenotype relationship (i.e., domi-
nance, co-dominance, partial dominance), we ran repli-
cated analyses for the length of the shorter allele, length 
of the longer allele and mean length of the two alleles. 
To test for relationships between Clock and migration 
timing, we ran linear mixed models (using the R package 
‘lme4’; Bates et al. 2015) of departure date in relation 
to combinations of fixed (Clock alleles, sex, and for the 
Asia analysis, breeding region) and random (site in N.Z., 
year and individual) factors using all migration dates for 
each individual bird. We evaluated models by comparison 
of AIC values (generated via the AIC function), treating 
models differing by AIC ≤ 2 as having similar support. 
We also tested for differences in support between models 
by comparing them using the anova function. All statisti-
cal analyses were performed in R v.3.5.1 (R Core Team 
2018). Finally, we performed population genetic analysis 
and compared AMOVA-Fst values from the ClkpolyQcds 
locus to those from a set of microsatellites. Details of these 
analyses and results are presented in Online Resource 4.

There is no a priori reason to think that the putative 
associations tested here would appear just in one of the 
sexes since the Clock gene is autosomal. However, natural 
and sexual selection can affect allele/genotype frequen-
cies differently in males and females (Kissner et al. 2003; 
Ellegren and Parsch 2007; Spottiswoode and Saino 2010; 
Saino et al. 2013; Bazzi et al. 2017); therefore, we also 
tested the potential association between ClkpolyQcds and 
migration departure time with an interaction between 
Clock and sex; results (not shown) were no different from 
those without this interaction.
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Results

ClockpolyQ genotyping and general parameters

We successfully amplified the ClkpolyQcds region from 135 
individuals. In the course of this genotyping, a sixth Clk-
polyQcds length allele was identified and denoted  Q7 based 
on its estimated length, although its sequence data were 
not obtained. Predicted protein sequences corresponding to 
the five sequenced ClkpolyQcds alleles (denoted  Q8‒Q12) 
were identical except for the poly-Q repeat length (Fig. 1). 
Average observed heterozygosity was 0.79 (females = 0.77, 
males = 0.80). The most common alleles were  Q9 (36%), 
 Q11 (24%) and  Q10 (22%) (Table 1). Genotype frequencies 
did not deviate from Hardy–Weinberg equilibrium for sexes 
combined or considered separately (all P = 0.8). Clkpol-
yQcds allele and genotype frequencies were not different 
between the sexes (Table 1).

ClkpolyQcds polymorphism and migratory 
departure dates

There were no clear patterns of association between Clk-
polyQcds genotype and migration timing (Fig. 2). Nonethe-
less for the N.Z. departure dates, the best generalized linear 
mixed models indicated that there was a slight sex difference 
in migration departure timing (males being ca. 2 days later 
than females) and a suggestion of an effect of ClkpolyQcds 
genotype (for the longer allele and the mean allele length; 
P = 0.074–0.089; Table 2). This apparent effect of Clkpol-
yQcds genotype was, however, due entirely to a single indi-
vidual with the longest allele lengths (mean 11.5). When 
this individual was removed from the analysis, no effect of 
ClkpolyQcds genotype was detected from the remaining 134 
birds.

For departures from Asia, three models with similar 
AIC scores indicated that (compared to northern-breeding 
females) males in the sample migrated 4.6–4.7 days later and 
southern breeders migrated 11.3–11.5 d earlier (Table 2). 
Two models found some support for a relationship between 
ClkpolyQcds genotype and migration timing (significant for 
the shorter allele; marginal for mean allele length together; 
Table 2). While the effect of the shorter Clock allele was 
statistically significant, a plot of modeled departure date in 

relation to Clock (Fig. 3) suggests that the relationship was 
largely due to one or two northern-breeding birds. Again, as 
with the New Zealand departures, this relationship disap-
peared when the latest bird was removed from the analysis.

Discussion

New Zealand-wintering bar-tailed godwits provide an excel-
lent system in which to test for genetic influences on migra-
tion timing, as the measure of phenology is clear and une-
quivocal (i.e., the date that major trans-oceanic migratory 
flights are embarked upon), and is variable between indi-
viduals yet strongly consistent within individuals. We found 
that godwits were highly polymorphic at the ClkpolyQcds 
locus (heterozygosity 0.79) with a wide range of genotypes 
so that relationships are unlikely to be strongly influenced by 
outliers. Despite this, we found no convincing evidence for a 
relationship between ClkpolyQcds genotype and migration 
departure timing in godwits.

ClkpolyQcds polymorphism in the bar‑tailed godwit

We identified six alleles within the 135 bar-tailed god-
wits genotyped, which is similar to what previous studies 
reported from other species (Johnsen et al. 2007; Liedvo-
gel et al. 2009; Liedvogel and Sheldon 2010; Dor et al. 
2011a, b; Caprioli et al. 2012; Chakarov et al. 2013; Kuhn 
et al. 2013; Bazzi et al. 2015; Saino et al. 2015; Stuber 
et al. 2016) (Table 3). The number of poly-Q repeats in 
godwit Clock alleles ranged from  Q7 to  Q12. Previous stud-
ies found Clock poly-Q allelic variation from  Q5 to  Q16 
(Johnsen et al. 2007; Dor et al. 2011a); therefore, godwit 
variation is within the range already reported. We found no 
significant differences in poly-Q allele content or genotype 
frequencies between sexes, as expected of an autosomal 
locus, but there was higher diversity of poly-Q genotypes 
in females than in males. Heterozygosity in godwits (0.79) 
was higher than any reported in previous studies (Table 3) 
ranging from monomorphic in sedge warbler (Acroceph-
alus schoenobaenus), reed warbler (Acrocephalus scir-
paceus) and European bee-eater (Merops apiaster) to 0.64 
in blue tit (Cyanistes caeruleus) (Dor et al. 2011b; Saino 
et al. 2015; Bazzi et al. 2016b), indicating high diversity 
in poly-Q alleles in godwits. Bazzi et al. (2016a) found 

Table 1  Summary statistics of 
ClkpolyQcds allele frequencies 
among godwits over-wintering 
in New Zealand

n number of individuals, k number of alleles, Ho observed heterozygosity

Dataset n k Ho Q7 Q8 Q9 Q10 Q11 Q12

Total New Zealand 135 6 0.79 0.07 0.08 0.36 0.22 0.24 0.03
Females 70 6 0.77 0.06 0.08 0.36 0.21 0.26 0.04
Males 65 6 0.80 0.08 0.07 0.37 0.24 0.22 0.02
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Fig. 2  Relationships between godwit mean migratory departure dates 
and ClkpolyQcds genotype. The ClkpolyQcds genotypes of individ-
ual female and male godwits are summarized, as mean allele length, 
length of longer allele, length of shorter allele and actual genotype 
(allele combination). Mean migratory departure dates of individual 
godwits from N.Z. and Asia are given as Gregorian calendar date 

(day 1 = 1 January). See “Materials and methods” for details of how 
migratory departure dates were obtained and calculated. N.Z. depar-
ture dataset consists of 135 godwits (70 female ( ◦ ), 65 male (●)); 
Asia departure dataset consists of 32 godwits (17 female (∆), 15 male 
(▲)). Note that while mean departure dates are shown for clarity, sta-
tistical tests were done on all available dates for each bird
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in trans-Saharan migrants (mainly passerine) that long-
distance migration was associated with low gene diver-
sity, which they interpreted as reflecting tighter migratory 
timing constraints. Specifically, they showed that genetic 
diversity [i.e., following the methodology used in Bazzi 
et al. (2016a): genetic diversity was measured as ĥ: see 
Nei and Roychoudhury (1974) and formula 12.33 in Nei 
and Kumar (2000)] of long-distance trans-Saharan migra-
tory passerines was between 0 and 0.78, with the icterine 
warbler (Hippolais icterina), which migrates a distance 
of ~ 7700 km, having one of the lowest genetic diversities 
(ĥ ~ 0.08), and the subalpine warbler (Sylvia cantillans), 
which migrates a distance of ~ 3000 km, having the larg-
est genetic diversity (ĥ ~ 0.78). Bar-tailed godwits do not 
match this pattern as they are an extreme long-distance 
migrant (> 11,000 km) yet with high Clock diversity using 
the methodology of Bazzi et al. (2016a: ĥ = 0.75), suggest-
ing that their observation of low Clock allelic diversity 
in long-distance passerine migrants is not generalizable.

Table 2  Results from 
generalized linear mixed model 
analyses of migration date from 
New Zealand and from Asia

Parameter contrasts are against females (sex) and northern Alaska (breeding region). Shown are parameter 
estimates for fixed factors from models within two AIC units of the lowest AIC model that were not signifi-
cantly different in each set of analyses. All models had year and bird ID as random factors; New Zealand 
models also had site as a random factor

From AIC ΔAIC Parameter Estimate SE df t P value

New Zealand
Model 1 2393.04 0.00 Intercept 65.06 5.99 21.16 10.39 < 0.001

Longer allele 0.87 0.48 132.08 1.80 0.074
Sex (male) 2.04 0.96 130.42 2.13 0.035

Model 2 2393.06 0.02 Intercept 64.88 6.29 25.03 10.31 < 0.001
Mean allele 0.95 0.56 132.61 1.72 0.089
Sex (male) 2.01 0.96 130.37 2.10 0.038

Model 3 2394.34 1.29 Intercept 64.34 6.35 26.02 10.13 < 0.001
Shorter allele 0.19 0.54 130.13 0.35 0.730
Longer allele 0.78 0.55 130.33 1.41 0.160
Sex (male) 2.04 0.96 129.48 2.12 0.036

Asia
Model 1 239.84 0.00 Intercept 112.11 11.74 26.21 9.55 < 0.001

Shorter allele 1.94 1.09 26.17 1.78 0.086
Longer allele 0.46 1.02 24.91 0.45 0.658
Sex (male) 4.68 2.08 26.40 2.25 0.033
Breed south − 11.27 2.15 27.61 − 5.25 < 0.001

Model 2 239.86 0.025 Intercept 115.21 9.34 27.75 12.34 < 0.001
Shorter allele 2.12 1.00 27.48 2.12 0.043
Sex (male) 4.66 2.05 27.42 2.28 0.031
Breed south − 11.40 2.10 28.54 − 5.43 < 0.001

Model 3 240.11 0.27 Intercept 112.87 1164 27.16 9.61 < 0.001
Mean allele 2.30 1.18 26.73 1.97 0.059
Sex (male) 4.65 2.06 27.42 2.26 0.032
Breed south − 11.17 2.14 28.90 − 5.22 < 0.001

Fig. 3  Predicted migration date from Asia in relation to the  shorter 
ClkpolyQ allele for northern Alaska-breeding godwits (black dots) 
and southern Alaska-breeding godwits (gray dots). Predicted values 
are from a mixed model regression of migration date versus Clock, 
sex, breeding region, year and bird ID. Points have been randomly 
offset on the x-axis for clarity
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Relationships with migration timing

We found no unequivocal support for an association 
between ClkpolyQcds genotype and migration timing for 
godwits departing either N.Z. or Asia. In N.Z., the only 
suggestion of a marginal relationship was shown to be 
an effect of a single individual, and ClkpolyQcds geno-
type showed no relationship with departure timing for the 
general population. In Asia, while there was a statistical 
relationship between the presence of the shorter Clkpol-
yQcds allele and migration timing, the relationship was 
very weak and its statistical significance was again driven 
by a single late-departing northern-breeding bird. These 
results strongly suggest that variation in ClkpolyQcds does 
not directly influence migration timing in the population 
of bar-tailed godwits examined in this study, contrasting 
with claims about ClkpolyQcds genotype associations 
in other species. In barn swallows (Hirundo rustica), it 
has been suggested that the ClkpolyQcds polymorphism 
may influence phenological variation (Bazzi et al. 2015), 
despite > 90% of the swallows being monomorphic for 
ClkpolyQcds (Dor et al. 2011b; Caprioli et al. 2012; Bazzi 
et al. 2015) so ClkpolyQcds variation cannot influence the 
majority of the population. Similarly, while the title of a 
paper studying the timing of passage of passerines through 
the Mediterranean implies strong predictive power (Saino 
et al. 2015, “Polymorphism at the Clock gene predicts phe-
nology of long-distance migration in birds”), their results 
were variable between species and between sexes (and 
effects absent in most comparisons). A potential confound-
ing influence in studies of birds on migration is that the 
destinations and breeding latitudes are usually unknown, 
and relationships between body size and latitude may also 
be unknown (which is relevant if for example wing length 
is used to “correct” migration date, e.g., Saino et al. 2015). 
In New Zealand-wintering godwits, geographical variation 
and migration timing are comparatively well resolved, and 
we know that late migrants are largely northern breed-
ers (Conklin et al. 2010) and that northern breeders are 
smaller than southern breeders (Conklin et al. 2011). The 
strength of the relationship between migration time and 
eventual breeding latitude is much stronger for godwits 
leaving Asia than New Zealand (Conklin et al. 2010), yet 
the annual consistency in individual departure dates is 
similar for both migration stages (Conklin et al. 2013). 
These findings indicate that godwits have strong individ-
ual migration schedules both at departure and after their 
stopover. If ClkpolyQcds genotype did strongly influence 
migration timing, this ought to be detectable at both points 
of the migration (though admittedly the sample size for 
birds leaving Asia is limited).
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The changing view of ClkpolyQcds and avian 
time‑related traits

The length of the ClkpolyQ region has been described as a 
modifier of the functionality (i.e., as transcription-activating 
factor) of the protein CLOCK, thereby potentially influenc-
ing annual timing-related phenotypes (Gekakis et al. 1998). 
The discovery of a poly-Q region (i.e., region rich in glu-
tamine) in the avian Clock gene and its polymorphism gave 
rise to studies trying to understand the meaning of the exist-
ence of this diversity at the ClkpolyQ region in the different 
aspects of the phenology (i.e., breeding time). The paper 
that essentially started the interest in Clock (Johnsen et al. 
2007) proposed that variation in Clock may relate to micro-
evolutionary responses to photoperiod related to latitude. 
Subsequent studies have investigated potential influences 
of Clock on phenological events in a wide range of birds 
(mostly passerines; see Table 3 for a summary of these stud-
ies). Subsequent studies suggested that ClkpolyQcds geno-
type may influence migration timing (O’Malley and Banks 
2008; Saino et al. 2015; Bazzi et al. 2017), but an increasing 
number of studies have failed to find any association (Bazzi 
et al. 2016a, b, 2017; Contina et al. 2018). In combination 
with the results of the study reported here, we conclude that 
there is little support for variation in ClkpolyQ genotype 
being a significant determinant of migration timing in birds.

The functional significance of variation in ClkpolyQ 
length is thought to lie in responses to photoperiod, with 
a tendency toward longer alleles in more northern popula-
tions reflecting selection pressures from longer daylengths 
at higher latitudes (Johnsen et al. 2007; Bazzi et al. 2016a). 
There is some evidence for ClkpolyQ length of individ-
ual birds relating to laying date in passerines (Liedvogel 
et al. 2009; Caprioli et al. 2012; Bourret and Garant 2015; 
Zhang et al. 2017). Zhang et al. (2017) proposed, based 
on rat (Rattus rattus) studies by Resuehr et al. (2007), that 
CLOCK/BMAL1 binds to E-box elements in the gonadotro-
pin releasing hormone receptor (GnRH-R) gene promoter 
region. GnRH plays a role in the upper stream of the hypo-
thalamic–pituitary–gonadal axis (HPG), triggering physi-
ological changes that prepare the organism for reproduction 
(Tsutsui and Ubuka 2018). Thus, it is possible that through 
a mechanism—which is still not clear—the length of Clk-
polyQ affects this binding and consequently produces the 
observed inter-individual variation in breeding/laying time 
(Zhang et al. 2017). In short, the most recent studies con-
sider that the role of Clock is more likely an adaptation to 
photoperiodic regimes at the breeding grounds with possible 
implications for breeding time rather than a direct determi-
nant of migratory timing. However, given that individual and 
population-level patterns of migration can exist (e.g., Tøt-
trup et al. 2012; Briedis et al. 2016; Pedersen et al. 2018), it 
is possible that variation in breeding latitude and associated 

migration timing could be correlated with differences in Clk-
polyQ composition and give rise to apparent Clock–migra-
tion relationships. If underlying mechanisms that drive bird 
phenological characteristics differ between species (Liedvo-
gel and Sheldon 2010) or even between distinct populations 
(Saino et al. 2015; Bazzi et al. 2016b), it is still possible that 
the ClkpolyQ polymorphism plays some role in generating 
migratory timing phenotypes in other species.

Other factors and limitations

Migration timing is influenced not only by the internal 
“clock” but also by environmental conditions (Marra et al. 
2005; Bauer et al. 2008; Bourret and Garant 2015). Over a 
decade of observations at our main godwit study site in N.Z. 
during the migration departure period have confirmed that 
conditions are, in general, favorable with unsuitable winds 
(e.g., northerlies to westerlies) typically lasting for only a 
few days in sequence (e.g., Conklin and Battley 2011). Envi-
ronmental variation probably influences an individual’s deci-
sion on when to depart on a scale of days, rather than weeks. 
There are some suggestions that individuals may fine-tune 
their migrations (Sergio et al. 2014; Evens et al. 2017), with 
first-time northward migrants having lower repeatability in 
migration departure date than adults (Battley 2006). This 
suggests that the experience gained by an individual after 
years of completed migratory cycles could blur the strength 
in which timing-associated genes are detected (Berthold 
2001). A significant improvement in our study would be 
using immature individuals’ first departure dates for migra-
tion, as these may be more genetically driven than subse-
quent migrations in which experience may play a role. We 
expect, however, that the genetic influence on an individual’s 
migratory behavior remains determinant in the adult’s aver-
age departure date; i.e., an immature early chronophenotype 
would become an adult early chronophenotype. Godwits are 
also social migrants that behaviorally advertise their ‘inten-
tion’ to migrate as a way of recruiting flockmates, and such 
social advertising could potentially ‘overrule’ innate tim-
ing preferences. However, godwits frequently ignore social 
cues from migrants on a given day only to migrate a day or 
two later (Conklin and Battley 2011), implying that indi-
vidual preferences can and frequently do overrule social 
cues from other birds. First-time migrants could possibly 
be more influenced by social cues from recruiting flocks than 
experienced birds, but evidence from the Firth of Thames 
(Battley 2006, Fig. 1) indicates that even in the presence of 
large numbers of migrating adults, first-time migrants still 
departed over virtually the whole migration period. This 
suggests that first-time migrants already have internally set 
programs that establish the stage of the season within which 
to migrate. Social cues may simply aid the joining of a flock 
within this receptive period.
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Conclusions

Our results indicate that the ClkpolyQcds polymorphism 
is not associated with the timing of northward migration 
in bar-tailed godwits. It adds to a growing list of studies 
that have failed to establish a link between Clock, calling 
into question the generality of any claimed Clock-timing 
associations. However, we limited our analysis to a single 
trait; other traits under circannual control (i.e., fat storage, 
moult, reproduction) might be good candidates for future 
studies. One possibility for the lack of concordance across 
ClockpolyQ studies is that migratory timing is indeed a com-
plex trait governed by numerous genes (polygenic) in which 
Clock variability seems not to contribute substantially or 
consistently to the observed chronophenotype variability 
(Pulido and Berthold 2003; Bazzi et al. 2016b; Hess et al. 
2016). Phenotype–genotype studies are complex since an 
individual phenotype can be influenced by many factors 
(i.e., environment and social context) and it could poten-
tially change according to a particular environment (i.e., 
phenotypic plasticity). Another alternative explanation is 
that ClockpolyQ plays no role in departure time decisions for 
migration at all. Finally, yet importantly, genetic components 
are not the only molecular-related sources of behavioral vari-
ation: epigenetic–phenotype associations are still in their 
early stages of being investigated, with the potential to play 
an important role in future discovery (Crews 2011; Powledge 
2011; Liedvogel and Lundberg 2014; Baerwald et al. 2016). 
Indeed, a recent study found evidence of methylation level at 
the ClkpolyQcds playing an important role regulating indi-
vidual variation in migration timing (Saino et al. 2017). To 
what extent epigenetics is involved in determining variation 
in migratory timing of individuals and populations across 
taxa is not yet sufficiently explored, but is a promising ave-
nue for future work.
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