23 research outputs found
Науково-документальна серія книг «Реабілітовані історією»: досвід та перспективи наукового дослідження (до 95-річчя з дня народження академіка НАН України П. Т. Тронька)
У статті аналізується наукова та громадсько-політична діяльність академіка НАН України П. Т. Тронька як науковця та організатора реалізації Державної програми науково-документальної серії книг «Реабілітовані історією».В статье анализируется научная и общественно-политическая деятельность академика НАН Украины П. Т. Тронько как учёного и организатора реализации Государственной программы научно-документальной серии книг «Реабилитированные историей».The author analyzed research, political and public activity of academic P. Tronko as scholar and organizer of State program of documentary series «Rehabilitated by history»
A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition
The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10
GRAd-COV2 vaccine provides potent and durable humoral and cellular immunity to SARS-CoV-2 in randomized placebo-controlled phase 2 trial
The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and heterologous immunization approaches implemented worldwide for booster doses call for diversified vaccine portfolios. GRAd-COV2 is a gorilla adenovirus-based COVID-19 vaccine candidate encoding prefusion-stabilized spike. The safety and immunogenicity of GRAd-COV2 is evaluated in a dose- and regimen-finding phase 2 trial (COVITAR study, ClinicalTrials.gov: NCT04791423) whereby 917 eligible participants are randomized to receive a single intramuscular GRAd-COV2 administration followed by placebo, or two vaccine injections, or two doses of placebo, spaced over 3 weeks. Here, we report that GRAd-COV2 is well tolerated and induces robust immune responses after a single immunization; a second administration increases binding and neutralizing antibody titers. Potent, variant of concern (VOC) cross-reactive spike-specific T cell response peaks after the first dose and is characterized by high frequencies of CD8s. T cells maintain immediate effector functions and high proliferative potential over time. Thus, GRAd vector is a valuable platform for genetic vaccine development, especially when robust CD8 response is needed
A gp41 MPER-specific Llama VHH Requires a Hydrophobic CDR3 for Neutralization but not for Antigen Recognition
The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10
Harnessing cd16-mediated nk cell functions to enhance therapeutic efficacy of tumor-targeting mabs
Natural killer (NK) cells hold a pivotal role in tumor-targeting monoclonal antibody (mAb)-based activity due to the expression of CD16, the low-affinity receptor for IgG. Indeed, beyond exerting cytotoxic function, activated NK cells also produce an array of cytokines and chemokines, through which they interface with and potentiate adaptive immune responses. Thus, CD16-activated NK cells can concur to mAb-dependent “vaccinal effect”, i.e., the development of antigen-specific responses, which may be highly relevant in maintaining long-term protection of treated patients. On this basis, the review will focus on strategies aimed at potentiating NK cell-mediated antitumor functions in tumor-targeting mAb-based regimens, represented by (a) mAb manipulation strategies, aimed at augmenting recruitment and efficacy of NK cells, such as Fc-engineering, and the design of bi-or trispecific NK cell engagers and (b) the possible exploitation of memory NK cells, whose distinctive characteristics (enhanced responsiveness to CD16 engagement, longevity, and intrinsic resistance to the immunosuppressive microenvironment) may maximize therapeutic mAb antitumor efficacy
T lymphocytes engineered to express a CD16-chimeric antigen receptor redirect T-cell immune responses against immunoglobulin G-opsonized target cells
Chimeric antigen receptors (CARs) designed for adoptive immunotherapy need to achieve two functions: antigen recognition and triggering of the lytic machinery of reprogrammed effector cells. Cytotoxic T cells have been engineered with FcγRIII (CD16) chimeric molecules to be redirected against malignant cells by monoclonal antibodies (mAbs). These cells have been proven to mediate granule-dependent cellular cytotoxicity, but it is not clear whether they can also kill malignant cells by a granule-independent mechanism of cell cytotoxicity
Fine tuning of the DNAM-1/TIGIT/ligand axis in mucosal T cells and its dysregulation in pediatric inflammatory bowel diseases (IBD)
De-regulated T-cell activation and functions are pivotal in the orchestration of immune-mediated tissue damage in IBD. We investigated the role of DNAM-1 (co-activating)/TIGIT (co-inhibitory)/ligand axis in the regulation of T-cell functions and its involvement in IBD pathogenesis. We show that DNAM-1 and TIGIT display a peculiar expression pattern on gut mucosa T-cell populations, in a microenvironment where their shared ligands (PVR and Nectin-2) are physiologically present. Moreover, DNAM-1 family receptor/ligand system is perturbed in IBD lesions, in a disease activity-dependent manner. The expression profile of CCR6 and CD103 mucosa addressins suggests that microenvironment-associated factors, rather than skewed recruitment of circulating T-cell populations, play a more relevant role in supporting the establishment of DNAM-1 and TIGIT expression pattern in mucosal T-cell populations, and may explain its alteration in IBD. Although both co-receptors mark functionally competent T cells, DNAM-1 and TIGIT segregate on T cells endowed with different proliferative potential. Moreover, their opposing role in regulating T-cell proliferation exquisitely depends on ligand availability. All together, our data propose a role for DNAM-1 and TIGIT in regulating mucosal T-cell activation and immune homeostasis, and highlight the involvement of an imbalance of this system in IBD
(Auto)Antibody Responses Shape Memory NK Cell Pool Size and Composition
In vivo establishment and long-term persistence of a heterogeneous memory or an adaptive NK cell pool represents a functional adaptation to human cytomegalovirus (HCMV) infection in humans. Memory NK cells are commonly identified by lack of the FcεRIγ signalling chain, variably associated to the preferential but not completely overlapping expression of the HLA-E receptor NKG2C and CD57 maturation marker. Although characterized by selective hyperresponsiveness to IgG stim-ulation, the impact of the CD16/antibody interaction in regulating the establishment/maintenance and size, and in determining the relative abundance of this population, is still under investigation. Memory NK cell subset ex vivo profile and in vitro responsiveness to CD16 stimulation was eval-uated in HCMV+ healthy donors and in patients affected by immune thrombocytopenia (ITP), an antibody-mediated autoimmune disease. We identified the FcεRIγ− NKG2C+ CD57+ memory NK cell subset, whose abundance is uniquely associated with anti-HCMV antibody levels in healthy seropositive donors, and which is significantly expanded in ITP patients. This fully mature memory subset robustly and selectively expands in vitro in response to mAb-opsonized targets or ITP-derived platelets and displays superior CD16-dependent IFNγ production. Our work identifies opsonizing antibodies as a host-dependent factor that shapes HCMV-driven memory NK cell compartment. We first demonstrate that chronic exposure to auto-antibodies contributes to the establishment/expansion of a highly specialized and unique memory NK cell subset with distinct CD16-dependent functional capabilities. We also identify the specific contribution of the lack of FcεRIγ chain in conferring to NKG2C+ CD57+ memory cells a higher responsivity to CD16 engagement
GRAd-COV2, a gorilla adenovirus-based candidate vaccine against COVID-19, is safe and immunogenic in younger and older adults
Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are essential for ending the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand alone. We describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized prefusion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein named GRAd-COV2. We assessed the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. For this purpose, a phase 1, dose-escalation, open-labeled trial was conducted including 90 healthy participants (45 aged 18 to 55 years old and 45 aged 65 to 85 years old) who received a single intramuscular administration of GRAd-COV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported. Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants. Consistently, neutralizing antibodies were detected in 42 of 44 younger-age and 45 of 45 older-age volunteers. In addition, GRAd-COV2 induced a robust and T helper 1 cell (TH1)-skewed T cell response against the spike protein in 89 of 90 participants from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support the further development of this vaccine