460 research outputs found

    Languages Canada: The Paradoxes of Linguistic Inclusivity – Colonial/Founding, Aboriginal and Immigrant Language Rights

    Get PDF
    This article approaches the question of inclusivity in contemporary Canadian society through the lens of official language policy. Although Canada has well-developed bilingual policies for English and French at the federal and provincial levels, the only jurisdictions which (at the time of writing) afford official language status to Aboriginal languages in addition to English and French are the Northwest Territories (nine First Nations and Inuit languages) and Nunavut (the Inuit language/s). The article situates the development of these territorial language policies within the contexts of Canadian history, the emergence of language policy more generally in Western societies, and the human rights revolution, and offers a tentative evaluation of them in terms of inclusivity, noting the paradox that inclusive recognition of the territories’ indigenous languages has not been extended to the immigrant languages, whose speakers partly outnumber the smaller Aboriginal-language communities, as well as the daunting problems faced in turning official recognition into practical implementation

    Diatoms and acid lakes. Proceedings of a workshop of the 8th International Diatom Symposium, Paris, September 1984

    Get PDF
    Diatom analysis of lake sedimentshasbecome one of the most important techniques used in the contemporary debate on lake acidification. In recent years the relationship between diatom assemblages and pH has been quantified allowing the pH history of individual lakes to be reconstructed. Much reliance is placed on these reconstructions yet we have little understanding of the causal mechanisms that underlie the impressive statistics. There has been little research on the ecology and physiology of diatom taxa in acid and acidifying waters and we have little information on the role of either planktonic or non-planktonic diatoms in acid lake ecosystems. This Workshop, hence, was not only devoted to the exchange of information on current research projects but also to a discussion of some of the ecological questions that require resolution to improve our understanding of the diatom:pH relationship

    Land-Use Experiments in the Loch Laidon Catchment

    Get PDF
    This report presents the results from the Stream Water Quality component of the Loch Laidon catchment land-use experiment which commenced in 1992. The experiment was established with the aim of examining the effects of cattle grazing on the aquatic and terrestrial habitats and biota of a moorland area of upland Scotland

    Hybrid-Vlasov simulation of soft X-ray emissions at the Earth’s dayside magnetospheric boundaries

    Get PDF
    Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause, the magnetosheath and the polar cusps by remote sensing techniques. The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) and Lunar Environment heliospheric X-ray Imager (LEXI) missions aim to obtain soft X-ray images of near-Earth space thanks to their Soft X-ray Imager (SXI) instruments. While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission, the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma. To investigate the possible signatures of ion-kinetic-scale processes in soft X-ray images, we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model. The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field. We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations, providing meridional and equatorial views. We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirror-mode wave structures in the magnetosheath and flux transfer events (FTEs) at the magnetopause. Our results suggest that, although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers, mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images. For instance, a local increase by 30% in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12% enhancement in the line-of-sight- and time-integrated soft X-ray emissivity originating from this region. Likewise, a proton density increase by 14% in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%. These are likely conservative estimates, given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind. These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale, transient phenomena occurring on the dayside

    Sustainability and management of groundwater resources in the Minchin Basin, Gansu Province

    Get PDF
    This project is concerned with a study of the sustainability of irrigation agriculture in the Minqin Basin in Gansu Province, China. In this region agriculture is dependent on water supply from groundwater resources. However, recharge rates from precipitation are very low and surface flow from the Tibetan Plateau is intercepted upstream to provide water for the city ofWuwei and its region. Future climate change may further decrease supply. Already many shallow wells have been exhausted or abandoned because of salinity problems, and new wells are now being drilled to pump water from depths up to 300m

    A Bayesian palaeoenvironmental transfer function model for acidified lakes

    Get PDF
    A Bayesian approach to palaeoecological environmental reconstruction deriving from the unimodal responses generally exhibited by organisms to an environmental gradient is described. The approach uses Bayesian model selection to calculate a collection of probability-weighted, species-specific response curves (SRCs) for each taxon within a training set, with an explicit treatment for zero abundances. These SRCs are used to reconstruct the environmental variable from sub-fossilised assemblages. The approach enables a substantial increase in computational efficiency (several orders of magnitude) over existing Bayesian methodologies. The model is developed from the Surface Water Acidification Programme (SWAP) training set and is demonstrated to exhibit comparable predictive power to existing Weighted Averaging and Maximum Likelihood methodologies, though with improvements in bias; the additional explanatory power of the Bayesian approach lies in an explicit calculation of uncertainty for each individual reconstruction. The model is applied to reconstruct the Holocene acidification history of the Round Loch of Glenhead, including a reconstruction of recent recovery derived from sediment trap data.The Bayesian reconstructions display similar trends to conventional (Weighted Averaging Partial Least Squares) reconstructions but provide a better reconstruction of extreme pH and are more sensitive to small changes in diatom assemblages. The validity of the posteriors as an apparently meaningful representation of assemblage-specific uncertainty and the high computational efficiency of the approach open up the possibility of highly constrained multiproxy reconstructions

    Sub-grid modeling of pitch-angle diffusion for ion-scale waves in hybrid-Vlasov simulations with Cartesian velocity space

    Get PDF
    Numerical simulations have grown to play a central role in modern sciences over the years. The ever-improving technology of supercomputers has made large and precise models available. However, this accuracy is often limited by the cost of computational resources. Lowering the simulation's spatial resolution in order to conserve resources can lead to key processes being unresolved. We have shown in a previous study how insufficient spatial resolution of the proton cyclotron instability leads to a misrepresentation of ion dynamics in hybrid-Vlasov simulations. This leads to larger than expected temperature anisotropy and loss-cone shaped velocity distribution functions. In this study, we present a sub-grid numerical model to introduce pitch-angle diffusion in a 3D Cartesian velocity space, at a spatial resolution where the relevant wave-particle interactions were previously not correctly resolved. We show that the method is successfully able to isotropize loss-cone shaped velocity distribution functions, and that this method could be applied to simulations in order to save computational resources and still correctly model wave-particle interactions.Peer reviewe

    Electron Signatures of Reconnection in a Global eVlasiator Simulation

    Get PDF
    Geospace plasma simulations have progressed toward more realistic descriptions of the solar wind-magnetosphere interaction from magnetohydrodynamic to hybrid ion-kinetic, such as the state-of-the-art Vlasiator model. Despite computational advances, electron scales have been out of reach in a global setting. eVlasiator, a novel Vlasiator submodule, shows for the first time how electromagnetic fields driven by global hybrid-ion kinetics influence electrons, resulting in kinetic signatures. We analyze simulated electron distributions associated with reconnection sites and compare them with Magnetospheric Multiscale (MMS) spacecraft observations. Comparison with MMS shows that key electron features, such as reconnection inflows, heated outflows, flat-top distributions, and bidirectional streaming, are in remarkable agreement. Thus, we show that many reconnection-related features can be reproduced despite strongly truncated electron physics and an ion-scale spatial resolution. Ion-scale dynamics and ion-driven magnetic fields are shown to be significantly responsible for the environment that produces electron dynamics observed by spacecraft in near-Earth plasmas.Peer reviewe

    Transmission of foreshock waves through Earth’s bow shock

    Get PDF
    The Earth's magnetosphere and its bow shock, which is formed by the interaction of the supersonic solar wind with the terrestrial magnetic field, constitute a rich natural laboratory enabling in situ investigations of universal plasma processes. Under suitable interplanetary magnetic field conditions, a foreshock with intense wave activity forms upstream of the bow shock. So-called 30 s waves, named after their typical period at Earth, are the dominant wave mode in the foreshock and play an important role in modulating the shape of the shock front and affect particle reflection at the shock. These waves are also observed inside the magnetosphere and down to the Earth's surface, but how they are transmitted through the bow shock remains unknown. By combining state-of-the-art global numerical simulations and spacecraft observations, we demonstrate that the interaction of foreshock waves with the shock generates earthward-propagating, fast-mode waves, which reach the magnetosphere. These findings give crucial insight into the interaction of waves with collisionless shocks in general and their impact on the downstream medium.Peer reviewe

    Biodiversity patterns of Arctic diatom assemblages in lakes and streams: Current reference conditions and historical context for biomonitoring

    Get PDF
    Comprehensive assessments of contemporary diatom distributions across the Arctic remain scarce. Furthermore, studies tracking species compositional differences across space and time, as well as diatom responses to climate warming, are mainly limited to paleolimnological studies due to a lack of routine monitoring in lakes and streams across vast areas of the Arctic. The study aims to provide a spatial assessment of contemporary species distributions across the circum-Arctic, establish contemporary biodiversity patterns of diatom assemblages to use as reference conditions for future biomonitoring assessments, and determine pre-industrial baseline conditions to provide historical context for modern diatom distributions. Diatom assemblages were assessed using information from ongoing regulatory monitoring programmes, individual research projects, and from surface sediment layers obtained from lake cores. Pre-industrial baseline conditions as well as the nature, direction and magnitude of changes in diatom assemblages over the pastc.200 years were determined by comparing surface sediment samples (i.e. containing modern assemblages) with a sediment interval deposited prior to the onset of significant anthropogenic activities (i.e. containing pre-1850 assemblages), together with an examination of diatoms preserved in contiguous samples from dated sediment cores. We identified several biotypes with distinct diatom assemblages using contemporary diatom data from both lakes and streams, including a biotype typical for High Arctic regions. Differences in diatom assemblage composition across circum-Arctic regions were gradual rather than abrupt. Species richness was lowest in High Arctic regions compared to Low Arctic and sub-Arctic regions, and higher in lakes than in streams. Dominant diatom taxa were not endemic to the Arctic. Species richness in both lakes and streams reached maximum values between 60 degrees N and 75 degrees N but was highly variable, probably reflecting differences in local and regional environmental factors and possibly sampling effort. We found clear taxon-specific differences between contemporary and pre-industrial samples that were often specific to both ecozone and lake depth. Regional patterns of species turnover (beta-diversity) in the pastc.200 years revealed that regions of the Canadian High Arctic and the Hudson Bay Lowlands to the south showed most compositional change, whereas the easternmost regions of the Canadian Arctic changed least. As shown in previous Arctic diatom studies, global warming has already affected these remote high latitude ecosystems. Our results provide reference conditions for future environmental monitoring programmes in the Arctic. Furthermore, diatom taxa identification and harmonisation require improvement, starting with circum-Arctic intercalibrations. Despite the challenges posed by the remoteness of the Arctic, our study shows the need for routine monitoring programmes that have a wide geographical coverage for both streams and lakes
    corecore