39 research outputs found

    Der Blaulicht-Photorezeptor Cryptochrom 2 aus Arabidopsis thaliana: Lichtabhängige Phosphorylierung und Interaktionspartner in der Signaltransduktion

    Get PDF
    Obwohl über die physiologische Bedeutung der pflanzlichen Cryptochrome bereits viel bekannt ist, und deren nahe Verwandte, die Photolyasen auch molekular sehr detailliert, einschließlich der Struktur auf atomarer Ebene, charakterisiert sind, sind die Mechanismen der Signalweiterleitung bei den Cryptochromen bis heute nur wenig erforscht. Dem Ziel folgend, diese molekularen Prozesse aufzuklären, wurde in dieser Arbeit Arabidopsis- Cryptochrom 2 untersucht. Es wurde dabei die lichtabhängige Phosphorylierung von cry2 entdeckt und näher untersucht. Das Aktionspektrum dieser Phosphorylierung ähnelt dabei stark einem Flavinspektrum. Versuche, die für diesen Prozess verantwortliche Kinase zu identifizieren, konnten nicht abgeschlossen werden. Eine Autophosphorylierungsaktivität wurde in Kooperation mit Margaret Ahmad (Paris) für cry1 gefunden, ist für cry2 bislang aber nicht gezeigt. In Hefe heterolog exprimiertes cry2 zeigt lichtabhängige Effekte, die auf mögliche Eigenschaften von cry2 als Transkriptionsaktivator schließen lassen. Zudem konnte eine DNA- Bindung für in vitro- transkribiertes und -translatiertes cry2 gezeigt werden. Untersuchungen zum Abbauweg von cry2 konnten unsere These eines proteasomalen Abbau von cry2 nicht bestätigen. Die subzelluläre Lokalisation zweier putativer Interaktionspartner von cry2 - At5g26280 und At2g02230 - wurde über konfokale Laserscan- Mikroskopie untersucht. At2g2230 konnte zudem als funktionelles F-Box Protein identifiziert werden

    Opsin 1 and Opsin 2 of the Corn Smut Fungus Ustilago maydis Are Green Light-Driven Proton Pumps

    Get PDF
    In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis

    Cellular Metabolites Enhance the Light Sensitivity of Arabidopsis Cryptochrome through Alternate Electron Transfer Pathways

    Get PDF
    Cryptochromes are blue light receptors with multiple signaling roles in plants and animals. Plant cryptochrome (cry1 and cry2) biological activity has been linked to flavin photoreduction via an electron transport chain comprising three evolutionarily conserved tryptophan residues known as the Trp triad. Recently, it has been reported that cry2 Trp triad mutants, which fail to undergo photoreduction in vitro, nonetheless show biological activity in vivo, raising the possibility of alternate signaling pathways. Here, we show that Arabidopsis thaliana cry2 proteins containing Trp triad mutations indeed undergo robust photoreduction in living cultured insect cells. UV/Vis and electron paramagnetic resonance spectroscopy resolves the discrepancy between in vivo and in vitro photochemical activity, as small metabolites, including NADPH, NADH, and ATP, were found to promote cry photoreduction even in mutants lacking the classic Trp triad electron transfer chain. These metabolites facilitate alternate electron transfer pathways and increase light-induced radical pair formation. We conclude that cryptochrome activation is consistent with a mechanism of light-induced electron transfer followed by flavin photoreduction in vivo. We further conclude that in vivo modulation by cellular compounds represents a feature of the cryptochrome signaling mechanism that has important consequences for light responsivity and activation

    Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution

    Get PDF
    DASH (Drosophila, Arabidopsis, Synechocystis, Human)-type cryp- tochromes (cry-DASH) belong to a family of flavoproteins acting as repair enzymes for UV-B–induced DNA lesions (photolyases) or as UV-A/blue light photoreceptors (cryptochromes). They are present in plants, bacteria, various vertebrates, and fungi and were originally considered as sensory photoreceptors because of their incapability to repair cyclobutane pyrimidine dimer (CPD) lesions in duplex DNA. However, cry-DASH can repair CPDs in single-stranded DNA, but their role in DNA repair in vivo remains to be clarified. The genome of the fungus Phycomyces blakesleeanus contains a single gene for a protein of the cryptochrome/photolyase family (CPF) encoding a cry-DASH, cryA, despite its ability to photoreactivate. Here, we show that cryA expression is induced by blue light in a Mad complex-dependent man- ner. Moreover, we demonstrate that CryA is capable of binding flavin (FAD) and methenyltetrahydrofolate (MTHF), fully complements the Escherichia coli photolyase mutant and repairs in vitro CPD lesions in single-stranded and double-stranded DNA with the same efficiency. These results support a role for Phycomyces cry-DASH as a photolyase and suggest a similar role for cry-DASH in mucoromycotina fung

    A Photolyase-Like Protein from Agrobacterium tumefaciens with an Iron-Sulfur Cluster

    Get PDF
    Photolyases and cryptochromes are evolutionarily related flavoproteins with distinct functions. While photolyases can repair UV-induced DNA lesions in a light-dependent manner, cryptochromes regulate growth, development and the circadian clock in plants and animals. Here we report about two photolyase-related proteins, named PhrA and PhrB, found in the phytopathogen Agrobacterium tumefaciens. PhrA belongs to the class III cyclobutane pyrimidine dimer (CPD) photolyases, the sister class of plant cryptochromes, while PhrB belongs to a new class represented in at least 350 bacterial organisms. Both proteins contain flavin adenine dinucleotide (FAD) as a primary catalytic cofactor, which is photoreduceable by blue light. Spectral analysis of PhrA confirmed the presence of 5,10-methenyltetrahydrofolate (MTHF) as antenna cofactor. PhrB comprises also an additional chromophore, absorbing in the short wavelength region but its spectrum is distinct from known antenna cofactors in other photolyases. Homology modeling suggests that PhrB contains an Fe-S cluster as cofactor which was confirmed by elemental analysis and EPR spectroscopy. According to protein sequence alignments the classical tryptophan photoreduction pathway is present in PhrA but absent in PhrB. Although PhrB is clearly distinguished from other photolyases including PhrA it is, like PhrA, required for in vivo photoreactivation. Moreover, PhrA can repair UV-induced DNA lesions in vitro. Thus, A. tumefaciens contains two photolyase homologs of which PhrB represents the first member of the cryptochrome/photolyase family (CPF) that contains an iron-sulfur cluster

    Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution

    Get PDF
    [EN] DASH (Drosophila, Arabidopsis, Synechocystis, Human)-type cryptochromes (cry-DASH) belong to a family of flavoproteins acting as repair enzymes for UV-B-induced DNA lesions (photolyases) or as UV-A/blue light photoreceptors (cryptochromes). They are present in plants, bacteria, various vertebrates, and fungi and were originally considered as sensory photoreceptors because of their incapability to repair cyclobutane pyrimidine dimer (CPD) lesions in duplex DNA. However, cry-DASH can repair CPDs in single-stranded DNA, but their role in DNA repair in vivo remains to be clarified. The genome of the fungus Phycomyces blakesleeanus contains a single gene for a protein of the cryptochrome/photolyase family (CPF) encoding a cry-DASH, cryA, despite its ability to photoreactivate. Here, we show that cryA expression is induced by blue light in a Mad complex-dependent manner. Moreover, we demonstrate that CryA is capable of binding flavin (FAD) and methenyltetrahydrofolate (MTHF), fully complements the Escherichia coli photolyase mutant and repairs in vitro CPD lesions in single-stranded and double-stranded DNA with the same efficiency. These results support a role for Phycomyces cry-DASH as a photolyase and suggest a similar role for cry-DASH in mucoromycotina fungi.Deutsche Forschungsgemeinschaf; European funds (EuropeanRegional Development Fund), Spanish Ministerio de Economía y Competitividad; Regional Government (Junta deAndalucía

    Funktionelle Analyse von Cryptochrom 3 aus Arabidopsis thaliana

    No full text
    Cryptochrome sind Blau-/UVA-Photorezeptoren, die eng mit den Photolyasen verwandt sind, aber keine DNA-Reparaturaktivität besitzen. Neben den „klassischen“ pflanzlichen Cryptochromen cry1 und cry2 wurde in Arabidopsis thaliana mit Cryptochrom 3 (cry3) ein drittes Cryptochrom identifiziert. Dieses Cryptochrom aus der Familie der DASH-Cryptochrome wurde als plastiden- und mitochondrienlokalisiertes Protein beschrieben. Obwohl Cryptochrom 3 schon sehr gut strukturell und biochemisch charakterisiert ist, konnte die biologische Funktion dieses Proteins in der Pflanze bisher noch nicht aufgeklärt werden. In dieser Arbeit wurde daher die biologische Funktion von cry3 in der Pflanze untersucht. Die cry3-Lokalisation in Chloroplasten und Mitochondrien konnte durch Zellfraktionierung und Immunolokalisationsstudien eindeutig bestätigt werden. Damit konnten Artefakte bei den bisherigen Untersuchungen durch die Überexpression und GFP-Fusion von cry3 ausgeschlossen werden. Die CRY3-Expression wird auf der Transkript-Ebene durch Licht reguliert. CRY3 wird während der Deetiolierungsphase hauptsächlich durch dunkelrotes Licht transient induziert. Phytochrom A konnte als der hauptverantwortliche Photorezeptor für diese Reaktion identifiziert werden. An dieser phytochromabhängigen Regulation sind auch PIF1 und PIF3 beteiligt. In ergrünten Pflanzen unterliegt die CRY3-Expression einer circadianen Regulation, welche anscheinend auch durch die Photoperiode beeinflusst wird. Zur funktionellen Analyse von Cryptochrom 3 wurden cry3-Mutanten in verschiedenen Mutanten-Kollektionen identifiziert und außerdem verschiedene cry3-Linien hergestellt. Zur weiteren Untersuchung der cry3-Funktion steht eine cry3-Überexpressionslinie, eine RNAi-knock-down-Linie, eine cry3-knock-out-Linie mit einer Transposon-Insertion, verschiedene T-DNA-Insertionslinien mit veränderter CRY3-Expression bzw. verkürztem cry3 C-Terminus, sowie eine putative knock-out-Linie mit einer Punktmutation in der splicing Erkennungssequenz zur Verfügung. Zwei dieser Mutantenlinien waren in ihrer Keimungsfähigkeit unter spezifischen Bedingungen beeinträchtigt. Der Keimungsphänotyp konnte in dieser Arbeit allerdings nicht eindeutig belegt werden. Abgesehen von dieser reduzierten Keimrate waren bei den untersuchten transgenen cry3-Linien keine offensichtlichen phänotypischen Unterschiede festzustellen. Auch ein Einfluss von cry3 auf die Blau-, Grün- und UV-Licht-abhängige Regulation von plastidenkodierten Genen konnte nicht nachgewiesen werden. Das Wachstum von Arabidopsis unter erhöhter UV-B-Bestrahlung wird durch cry3 nicht beeinflusst. Für cry3 ist zwar in vitro eine Photolyasefunktion bei einzelsträngiger DNA und doppelsträngiger DNA mit loop-Strukturen beschrieben worden, dennoch sprechen die Ergebnisse dieser Arbeit gegen eine in vivo Funktion von cry3 als DNA-Reparaturenzym, weil durch einen PCR-basierten Reparatur-assay kein Einfluss von cry3 auf die DNA-Reparatur in Chloroplasten und Mitochondrien nachgewiesen werden konnte

    Untersuchungen zur Expression und Lokalisationen des Cryptochrom3 in Arabidopsis thaliana

    No full text
    In dieser Arbeit wurden grundlegende Eigenschaften des Cryptochroms 3 in Arabidopsis thaliana untersucht. Dieser Blaulichtrezpetor gehört zur Familie der DASH-Cryptochrome. Es wurde die Expression von cry3 in verschiedenen Organen bzw. Geweben von Arabidopsis thaliana auf RNA und Proteinebene untersucht, um daraus Rückschlüsse auf die Funktion von cry3 ziehen zu können. Durch Generierung transgener Pflanzen, die cry3-GFP exprimieren, wurde die Organellen-Lokalisation des Proteins auch in intatkten transgenen Linien nachgewiesen. Ferner wurden Pflanzenlinien etabliert, in denen das Protein nur in Mitochondrien- bzw. nur in Chloroplasten lokalisiert ist, um diese Linien dann phänotypisch mit dem Wildtyp vergleichen zu können, in dem cry3 in beiden Organellen lokalisiert. Anhand transienter Expression des cry3-GFP Fusionsproteins wurde eine mögliche lichtabhängige Lokalisation in den Chloroplasten untersucht. Die N-terminale α-Helix von cry3 wurde auf eine mögliche regulatorische Funktion für den Import in die Chloroplasten hin untersucht. Dies wurde anhand transienter Expression in Protoplasten nicht bestätigt. Darüberhinaus konnte eine bisher für DASH Cryptochrome unbekannte Lokalisation im Nucleolus gezeigt werden
    corecore