8 research outputs found

    MYC as therapeutic target in leukemia and lymphoma

    Get PDF
    MYC is a transcription factor that is involved in the expression of many genes. Deregulated MYC is found in about half of human tumors, being more prevalent in hematological neoplasms. Deregulation mechanisms include chromosomal translocation (particularly in lymphoma), amplification, and hyperactivation of MYC transcription. Here we review MYC involvement in the major types of leukemia and lymphoma. MYC rearrangements appear in all Burkitt lymphomas and are common in other lymphoma types, whereas in acute lymphoblastic leukemia, acute myeloid leukemia, lymphoproliferative, and myeloproferative diseases, they are less frequent. However, MYC overexpression is present in all types of hematological malignancies and often correlates with a worse prognosis. Data in leukemia-derived cells and in animal models of lymphomagenesis and leukemogenesis suggest that MYC would be a good therapeutic target. Several MYC-directed therapies have been assayed in preclinical settings and even in clinical trials. First, peptides and small molecules that interrupt the MYC–MAX interaction impair MYC-mediated tumorogenesis in several mouse models of solid tumors, although not yet in lymphoma and leukemia models. Second, there are a number of small molecules inhibiting the interaction of MYC–MAX heterodimers with DNA, still in the preclinical research phase. Third, inhibitors of MYC expression via the inhibition of BRD4 (a reader of acetylated histones) have been shown to control the growth of MYC-transformed leukemia and lymphoma cells and are being used in clinic trials. Finally, we review a number of promising MYC-mediated synthetic lethal approaches that are under study and have been tested in hematopoietic neoplasms

    Mannose-binding lectin gene variants and infections in patients receiving autologous stem cell transplantation

    Get PDF
    BACKGROUND: Serious infections are common in patients undergoing autologous stem cell transplantation (ASCT) mainly because of the effects of immunosuppression. The innate immune system plays an important role in the defense against different infections. Mannose binding lectin (MBL) is a central molecule of the innate immune system. There are several promoter polymorphisms and structural variants of the MBL2 gene that encodes for this protein. These variants produce low levels of MBL and have been associated with an increased risk for infections. METHODS: Prospective cohort study. The incidence, severity of infections and mortality in 72 consecutive patients with hematologic diseases who underwent ASCT between February 2006 and June 2008 in a tertiary referral center were analyzed according to their MBL2 genotype. INNO-LiPA MBL2 was used for MBL2 gene amplification and genotyping. Relative risks (RR) (IC95%) as measure of association were calculated. Multivariate analysis was performed using logistic regression. RESULTS: A statistically significant higher number of fungal infections was found in patients with MBL2 variants causing low MBL levels (21.1%versus1.9%, p=0.016). In this MBL2 variant group infection was more frequently the cause of mortality than in the MBL2 wild-type group (p=0.05). Although not statistically significant, there was a higher incidence of major infections in the MBL2 variant group as well as a higher number of infections caused by gram-positive bacteria. CONCLUSIONS: Low-producer MBL2 genotypes were associated with an increased number of fungal infections in ASCT patients, which would suggest that MBL has a protective role against such infections. ASCT patients with MBL2 variant genotypes are more likely to die as a result of an infection

    First Report of a Case of Prostatitis Due to Acanthamoeba in a Dog

    Get PDF
    The first case of prostatitis in a ten year old mixed breed dog due to Acanthamoeba genotype T4 is reported. The dog was suffering from kidney dysfunction and was admitted for exploration of its organs by echography. All organs were in normal conditions with the exception of the prostate which showed signs of inflammation. An ultrasound-guided puncture was thus performed for further cytological and microbiological study. When the obtained fluid was observed under the microscope, Acanthamoeba trophozoites were detected in a high number. No other pathogens were isolated. Both culture and PCR were positive for Acanthamoeba genus and the isolate was later identified as genotype T4. Unfortunately at this stage, the dog’s owner decided to reject any kind of treatment or therapy. To the best of our knowledge, this is the first report of prostatitis in a dog due to Acanthamoeba genus

    High p27 protein levels in chronic lymphocytic leukemia are associated to low Myc and Skp2 expression, confer resistance to apoptosis and antagonize Myc effects on cell cycle

    Get PDF
    Myc (c-Myc) counteracts p27 effects, and low p27 usually correlates with high Myc expression in human cancer. However there is no information on the co-expression of both genes in chronic lymphocytic leukemia (CLL). We found a lack of correlation between RNA and protein levels of p27 and Myc in CLL cells, so we determined the protein levels by immunoblot in 107 cases of CLL. We observed a high p27 protein expression in CLL compared to normal B cells. Ectopic p27 expression in a CLL-derived cell line resulted in cell death resistance. Surprisingly, Myc expression was very low or undetectable in most CLL cases analyzed, with a clear correlation between high p27 and low Myc protein levels. This was associated with low Skp2 expression, which is consistent with the Skp2 role in p27 degradation and with SKP2 being a Myc target gene. High Myc expression did not correlate with leukemia progression, despite that cell cycle-related Myc target genes were upregulated. However, biochemical analysis showed that the high p27 levels inhibited cyclin-Cdk complexes even in Myc expressing CLL cells. Our data suggest that the combination of high p27 and low Myc is a marker of CLL cells which is mediated by Skp2

    Chronic lymphocytic leukemia cells in lymph nodes show frequent NOTCH1 activation

    Get PDF
    Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the Western world. Pathogenic mechanisms involve multiple external events (such as microenvironmental and antigenic stimuli) and internal events (genetic and epigenetic alterations) that are associated with the transformation, progression and evolution of CLL. CLL is characterized by an accumulation of mature B cells in peripheral blood, bone marrow and lymphoid tissues. Extracellular stimuli play an important role in the development and maintenance of neoplastic cells. B-CLL cells proliferate and activate pathogenic signaling pathways in anatomical structures known as proliferation centers, which are usually more conspicuous in involved lymph nodes.1 Its clinical course is quite heterogeneous, whereby some patients progress rapidly and have short survival, whereas others have a more stable clinical course that may not need treatment for years.This work was supported by grants from the Ministerio de Economía y Competitividad (MINECO) (SAF2013-47416-R) Instituto de Salud Carlos III (ISCIII)- FEDER – MINECO- AES (CP11/00018, PI10/00621, RD012/0036/0060), and Asociación Española contra el Cancer (AECC). MS-B is supported by a Miguel Servet contract from ISCIII-FEDER (CP11/00018). Salary support to SG is provided by CP11/00018, from ISCIII-FEDER. JG-R is supported by a predoctoral grant from the Fundación Investigación Puerta de Hierro.S

    B-cell lymphoma mutations: improving diagnostics and enabling targeted therapies

    Get PDF
    B-cell lymphomas comprise an increasing number of clinicopathological entities whose characterization has historically been based mainly on histopathological features. In recent decades, the analysis of chromosomal aberrations as well as gene and miRNA expression profile studies have helped distinguish particular tumor types and also enabled the detection of a number of targets with therapeutic implications, such as those activated downstream of the B-cell receptor. Our ability to identify the mechanisms involved in B-cell lymphoma pathogenesis has been boosted recently through the use of Next Generation Sequencing techniques in the analysis of human cancer. This work summarizes the recent findings in the molecular pathogenesis of B-cell neoplasms with special focus on those clinically relevant somatic mutations with the potential to be explored as candidates for the development of new targeted therapies. Our work includes a comparison between the mutational indexes and ranges observed in B-cell lymphomas and also with other solid tumors and describes the most striking mutational data for the major B-cell neoplasms. This review describes a highly dynamic field that currently offers many opportunities for personalized therapy, although there is still much to be gained from the further molecular characterization of these clinicopathological entities

    First Report of a Case of Prostatitis Due to Acanthamoeba in a Dog

    No full text
    The first case of prostatitis in a ten year old mixed breed dog due to Acanthamoeba genotype T4 is reported. The dog was suffering from kidney dysfunction and was admitted for exploration of its organs by echography. All organs were in normal conditions with the exception of the prostate which showed signs of inflammation. An ultrasound-guided puncture was thus performed for further cytological and microbiological study. When the obtained fluid was observed under the microscope, Acanthamoeba trophozoites were detected in a high number. No other pathogens were isolated. Both culture and PCR were positive for Acanthamoeba genus and the isolate was later identified as genotype T4. Unfortunately at this stage, the dog’s owner decided to reject any kind of treatment or therapy. To the best of our knowledge, this is the first report of prostatitis in a dog due to Acanthamoeba genus
    corecore