8 research outputs found

    A maturational shift in the frontal cortex synaptic transcriptional landscape underlies schizophrenia-relevant behavioural traits:A congenital rat model

    No full text
    Disruption of brain development early in life may underlie the neurobiology behind schizophrenia. We have reported more immature synaptic spines in the frontal cortex (FC) of adult Roman High-Avoidance (RHA-I) rats, a behavioural model displaying schizophrenia-like traits. Here, we performed a whole transcriptome analysis in the FC of 4 months old male RHA-I (n=8) and its counterpart, the Roman Low-Avoidance (RLA-I) (n=8). We identified 203 significant genes with overrepresentation of genes involved in synaptic function. Next, we performed a gene set enrichment analysis (GSEA) for genes co-expressed during neurodevelopment. Gene networks were obtained by weighted gene co-expression network analysis (WGCNA) of a transcriptomic dataset containing human FC during lifespan (n=269). Out of thirty-one functional gene networks, six were significantly enriched in the RHA-I. These were differentially regulated during infancy and enriched in biological ontologies related to myelination, synaptic function, and immune response. We validated differential gene expression in a new cohort of adolescent (&lt;=2 months old) and young-adult (&gt;=3 months old) RHA-I and RLA-I rats. The results confirmed overexpression of Gsn, Nt5cd1, Ppp1r1b, and Slc9a3r1 in young-adult RHA-I, while Cables1, a regulator of Cdk5 phosphorylation in actin regulation and involved in synaptic plasticity and maturation, was significantly downregulated in adolescent RHA-I. This age-related expression change was also observed for presynaptic components Snap25 and Snap29. Our results show a different maturational expression profile of synaptic components in the RHA-I strain, supporting a shift in FC maturation underlying schizophrenia-like behavioural traits and adding construct validity to this strain as a neurodevelopmental model.</p

    Upper cortical layer–driven network impairment in schizophrenia

    Get PDF
    Schizophrenia is one of the most widespread and complex mental disorders. To characterize the impact of schizophrenia, we performed single-nucleus RNA sequencing (snRNA-seq) of >220,000 neurons from the dorsolateral prefrontal cortex of patients with schizophrenia and matched controls. In addition, >115,000 neurons were analyzed topographically by immunohistochemistry. Compositional analysis of snRNA-seq data revealed a reduction in abundance of GABAergic neurons and a concomitant increase in principal neurons, most pronounced for upper cortical layer subtypes, which was substantiated by histological analysis. Many neuronal subtypes showed extensive transcriptomic changes, the most marked in upper-layer GABAergic neurons, including down-regulation in energy metabolism and up-regulation in neurotransmission. Transcription factor network analysis demonstrated a developmental origin of transcriptomic changes. Last, Visium spatial transcriptomics further corroborated upper-layer neuron vulnerability in schizophrenia. Overall, our results point toward general network impairment within upper cortical layers as a core substrate associated with schizophrenia symptomatology

    Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map

    No full text
    Although the cerebral cortex is organized into six excitatory neuronal layers, it is unclear whether glial cells show distinct layering. In the present study, we developed a high-content pipeline, the large-area spatial transcriptomic (LaST) map, which can quantify single-cell gene expression in situ. Screening 46 candidate genes for astrocyte diversity across the mouse cortex, we identified superficial, mid and deep astrocyte identities in gradient layer patterns that were distinct from those of neurons. Astrocyte layer features, established in the early postnatal cortex, mostly persisted in adult mouse and human cortex. Single-cell RNA sequencing and spatial reconstruction analysis further confirmed the presence of astrocyte layers in the adult cortex. Satb2 and Reeler mutations that shifted neuronal post-mitotic development were sufficient to alter glial layering, indicating an instructive role for neuronal cues. Finally, astrocyte layer patterns diverged between mouse cortical regions. These findings indicate that excitatory neurons and astrocytes are organized into distinct lineage-associated laminae.status: publishe
    corecore