770 research outputs found
The environmental context of the Neolithic monuments on the Brodgar Isthmus, Mainland, Orkney
This work was funded in part by Historic Environment Scotland.The World Heritage Sites of Orkney, Scotland contain iconic examples of Neolithic monumentality that have provided significant information about this period of British prehistory. However, currently, a complete understanding of the sites remains to be achieved. This is, in part, because the monuments lack an adequate context within the broader palaeolandscape. Recent investigations (seismic geophysical survey, microfossil analysis and 14C dating) in and around the Brodgar Isthmus, both onshore and offshore, are used to reconstruct the landscapes at a time when sea-level, climate and vegetation were different to that experienced today. Results show that in the early Neolithic the isthmus between the Ring of Brodgar and Stones of Stenness was broader with a smaller loch to the west. Furthermore this landscape contained sandstone outcrops that would have provided a potential source of stone for monument construction. Microfossil analysis and radiocarbon dates demonstrate that the Loch of Stenness was transformed from freshwater to brackish during the early Neolithic, perhaps immediately preceding construction of the major monuments. Finally, the analysis of our data suggests that sediment influx to the loch shows a tenfold increase coincident with widespread vegetation change that straddles the Mesolithic/Neolithic transition at c. 8 ka cal. B.P. These results provide, for the first time, a landscape context for the Neolithic sites on the isthmus.PostprintPeer reviewe
Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion
To model a nematic emulsion consisting of a surfactant-coated water droplet
dispersed in a nematic host, we performed a molecular dynamics simulation of a
droplet immersed in a system of 2048 Gay-Berne ellipsoids in a nematic phase.
Strong radial anchoring at the surface of the droplet induced a Saturn ring
defect configuration, consistent with theoretical predictions for very small
droplets. A surface ring configuration was observed for lower radial anchoring
strengths, and a pair of point defects was found near the poles of the droplet
for tangential anchoring. We also simulated the falling ball experiment and
measured the drag force anisotropy, in the presence of strong radial anchoring
as well as zero anchoring strength.Comment: 17 pages, 15 figure
Inter-rater reliability of the EPUAP pressure ulcer classification system using photographs
Background. Many classification systems for grading pressure ulcers are discussed in the literature. Correct identification and classification of a pressure ulcer is important for accurate reporting of the magnitude of the problem, and for timely prevention. The reliability of pressure ulcer classification systems has rarely been tested. Aims and objectives. The purpose of this paper is to examine the inter-rater reliability of classifying pressure ulcers according to the European Pressure Ulcer Advisory Panel classification system when using pressure ulcer photographs.Design. Survey was among pressure ulcer experts.Methods. Fifty-six photographs were presented to 44 pressure ulcer experts. The experts classified the lesions as normal skin, blanchable erythema, pressure ulcer (four grades) or incontinence lesion. Inter-rater reliability was calculated.Results. The multirater-Kappa for the entire group of experts was 0.80 (P < 0.001).Various groups of experts obtained comparable results. Differences in classifications are mainly limited to 1 degree of difference. Incontinence lesions are most often confused with grade 2 (blisters) and grade 3 pressure ulcers (superficial pressure ulcers).Conclusions. The inter-rater reliability of the European Pressure Ulcer Advisory Panel classification appears to be good for the assessment of photographs by experts. The difference between an incontinence lesion and a blister or a superficial pressure ulcer does not always seem clear.Relevance to clinical practice. The ability to determine correctly whether a lesion is a pressure ulcer lesion is important to assess the effectiveness of preventive measures. In addition, the ability to make a correct distinction between pressure ulcers and incontinence lesions is important as they require different preventive measures. A faulty classification leads to mistaken measures and negative results. Photographs can be used as a practice instrument to learn to discern pressure ulcers from incontinence lesions and to get to know the different grades of pressure ulcers. The Pressure Ulcer Classification software package has been developed to facilitate learning
Polynomial-Time Amoeba Neighborhood Membership and Faster Localized Solving
We derive efficient algorithms for coarse approximation of algebraic
hypersurfaces, useful for estimating the distance between an input polynomial
zero set and a given query point. Our methods work best on sparse polynomials
of high degree (in any number of variables) but are nevertheless completely
general. The underlying ideas, which we take the time to describe in an
elementary way, come from tropical geometry. We thus reduce a hard algebraic
problem to high-precision linear optimization, proving new upper and lower
complexity estimates along the way.Comment: 15 pages, 9 figures. Submitted to a conference proceeding
Phase separating binary fluids under oscillatory shear
We apply lattice Boltzmann methods to study the segregation of binary fluid
mixtures under oscillatory shear flow in two dimensions. The algorithm allows
to simulate systems whose dynamics is described by the Navier-Stokes and the
convection-diffusion equations. The interplay between several time scales
produces a rich and complex phenomenology. We investigate the effects of
different oscillation frequencies and viscosities on the morphology of the
phase separating domains. We find that at high frequencies the evolution is
almost isotropic with growth exponents 2/3 and 1/3 in the inertial (low
viscosity) and diffusive (high viscosity) regimes, respectively. When the
period of the applied shear flow becomes of the same order of the relaxation
time of the shear velocity profile, anisotropic effects are clearly
observable. In correspondence with non-linear patterns for the velocity
profiles, we find configurations where lamellar order close to the walls
coexists with isotropic domains in the middle of the system. For particular
values of frequency and viscosity it can also happen that the convective
effects induced by the oscillations cause an interruption or a slowing of the
segregation process, as found in some experiments. Finally, at very low
frequencies, the morphology of domains is characterized by lamellar order
everywhere in the system resembling what happens in the case with steady shear.Comment: 1 table and 12 figures in .gif forma
Remote practicals in the time of coronavirus, a multidisciplinary approach
Due to the COVID-19 pandemic, universities across the world have curtailed face to face teaching. Associated with this is the halt to the delivery of the practical experience required of engineering students. The Multidisciplinary Engineering Education (MEE) team at The University of Sheffield have responded to this problem in an efficient and effective way by recording laboratory experiences and putting videos, quizzes and data online for students to engage with. The focus of this work was on ensuring all Learning Outcomes (LOs) for modules and courses were preserved. Naturally, practical skills cannot be easily provided using this approach, but it is an effective way of getting students to interact with real data, uncertainty and equipment which they cannot access directly. A number of short case studies from across the range of engineering disciplines are provided to inspire and guide other educators in how they can move experiments on line in an efficient and effective manner. No student feedback is available at the time of writing, but anecdotal evidence is that this approach is at least acceptable for students and a way of collecting future feedback is suggested. The effort expended on this approach and the artefacts produced will support student learning after the initial disruption of the lockdown has passed
More Bubbling Solutions
In this note we construct families of asymptotically flat, smooth,
horizonless solutions with a large number of non-trivial two-cycles (bubbles)
of N=1 five-dimensional supergravity with an arbitrary number of vector
multiplets, which may or may not have the charges of a macroscopic black hole
and which contain the known bubbling solutions as a sub-family. We do this by
lifting various multi-center BPS states of type IIA compactified on Calabi-Yau
three-folds and taking the decompactification (M-theory) limit. We also analyse
various properties of these solutions, including the conserved charges, the
shape, especially the (absence of) throat and closed timelike curves, and
relate them to the various properties of the four-dimensional BPS states. We
finish by briefly commenting on their degeneracies and their possible relations
to the fuzzball proposal of Mathur et al.Comment: 36 pages, Latex; JHEP version, one appendix added, references adde
Molecular simulation of chevrons in confined smectic liquid crystals
Chevron structures adopted by confined smectic liquid crystals
are investigated via molecular dynamics simulations of the Gay-Berne
model. The chevrons are formed by quenching nematic films confined
between aligning planar substrates whose easy axes have opposing
azimuthal components. When the substrates are perfectly smooth, the
chevron formed migrates rapidly towards one of the confining walls to
yield a tilted layer structure. However, when substrate roughness is
included, by introducing a small-amplitude modulation to the particle-
substrate interaction well-depth, a symmetric chevron is formed which
remains stable over sufficiently long runtimes for detailed structural
information, such as the relevant order parameters and director orien-
tation, to be determined. For both smooth and rough boundaries, the
smectic order parameter remains non-zero across the entire chevron,
implying that layer identity is maintained across the chevron tip. Also, when the surface-stabilised chevron does eventually revert to a tilted layer structure, it does so via surface slippage, such that layer integrity is maintained throughout the chevron to tilted layer relaxation process.
</p
- …