326 research outputs found

    Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments.

    Get PDF
    Published onlineJournal ArticleReviewSince its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host-pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host-pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment.This work was funded by the Open Innovation Platform at the University of Exeter (Open Innovation Fund Initiative PHSW029) and by the Centre for Environment, Fisheries and Aquaculture Science (Cefas) (under seedcorn project DP318 to GDS) under the Strategic Alliance partnership between the University of Exeter and Cefas

    De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways.

    Get PDF
    Journal ArticleCopyright © 2015 Verbruggen et al.BACKGROUND: The European shore crab, Carcinus maenas, is used widely in biomonitoring, ecotoxicology and for studies into host-pathogen interactions. It is also an important invasive species in numerous global locations. However, the genomic resources for this organism are still sparse, limiting research progress in these fields. To address this resource shortfall we produced a C. maenas transcriptome, enabled by the progress in next-generation sequencing technologies, and applied this to assemble information on the innate immune system in this species. RESULTS: We isolated and pooled RNA for twelve different tissues and organs from C. maenas individuals and sequenced the RNA using next generation sequencing on an Illumina HiSeq 2500 platform. After de novo assembly a transcriptome was generated encompassing 212,427 transcripts (153,699 loci). The transcripts were filtered, annotated and characterised using a variety of tools (including BLAST, MEGAN and RSEM) and databases (including NCBI, Gene Ontology and KEGG). There were differential patterns of expression for between 1,223 and 2,741 transcripts across tissues and organs with over-represented Gene Ontology terms relating to their specific function. Based on sequence homology to immune system components in other organisms, we show both the presence of transcripts for a series of known pathogen recognition receptors and response proteins that form part of the innate immune system, and transcripts representing the RNAi, Toll-like receptor signalling, IMD and JAK/STAT pathways. CONCLUSIONS: We have produced an assembled transcriptome for C. maenas that provides a significant molecular resource for wide ranging studies in this species. Analysis of the transcriptome has revealed the presence of a series of known targets and functional pathways that form part of their innate immune system and illustrate tissue specific differences in their expression patterns.Cefas Seedcorn Contract #DP318University of Exeter’s Open Innovation PlatformWellcome Trust Institutional Strategic Support Awar

    Diseases of the giant river prawn Macrobrachium rosenbergii: A review for a growing industry

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: Data sharing is not applicable to this article as no new data were created or analysed in this study.The giant river prawn, Macrobrachium rosenbergii, is a major focus of aquaculture in tropical and sub-tropical regions around the globe. Over the last 30 years, culture of M. rosenbergii has increased exponentially as demand has risen both for domestic consumption and for international export trade. As with many aquaculture species increases in production have been accompanied by the emergence of diseases affecting yield, profit and trading potential. Disease-causing agents include pathogens infecting other crustaceans, such as Decapod Iridescent Virus (DIV1), as well as pathogens only known from M. rosenbergii such as White Tail Disease caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV). Here, we review the pathogenic agents associated with the culture of M. rosenbergii since commercial culture began in earnest during the 1970s. Particular emphasis is given to pathogens first identified in other aquaculture host species, but which have subsequently been shown to infect and cause disease in M. rosenbergii. As polyculture of M. rosenbergii with other aquaculture species is common practice, including culture with other decapods, crabs and fish, increased pathogen transfer among these farmed species may occur as M. rosenbergii aquaculture increases in the future.UK Department of Environment, Food and Rural Affairs (Defra)Biotechnology and Biological Sciences Research Council (BBSRC)Economic and Social Research Council (ESRC)Newton FundDepartment for International Development (DFID)Indian Department of Biotechnolog

    The first clawed lobster virus Homarus gammarus nudivirus (HgNV n. sp.) expands the diversity of the Nudiviridae

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Viral diseases of crustaceans are increasingly recognised as challenges to shellfish farms and fisheries. Here we describe the first naturally-occurring virus reported in any clawed lobster species. Hypertrophied nuclei with emarginated chromatin, characteristic histopathological lesions of DNA virus infection, were observed within the hepatopancreatic epithelial cells of juvenile European lobsters (Homarus gammarus). Transmission electron microscopy revealed infection with a bacilliform virus containing a rod shaped nucleocapsid enveloped in an elliptical membrane. Assembly of PCR-free shotgun metagenomic sequencing produced a circular genome of 107,063 bp containing 97 open reading frames, the majority of which share sequence similarity with a virus infecting the black tiger shrimp: Penaeus monodon nudivirus (PmNV). Multiple phylogenetic analyses confirm the new virus to be a novel member of the Nudiviridae: Homarus gammarus nudivirus (HgNV). Evidence of occlusion body formation, characteristic of PmNV and its closest relatives, was not observed, questioning the horizontal transmission strategy of HgNV outside of the host. We discuss the potential impacts of HgNV on juvenile lobster growth and mortality and present HgNV-specific primers to serve as a diagnostic tool for monitoring the virus in wild and farmed lobster stocks.Centre for Environment, Fisheries and Aquaculture Science (CEFAS)Innovate UKBBSR

    How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease

    Get PDF
    This is the author accepted manuscript (article in press version). The final version is available from the publisher via the DOI in this recordWhite Spot Syndrome Virus (WSSV) causes White Spot Disease (WSD) and is historically the most devastating disease in the shrimp industry. Global losses from this disease have previously exceeded 3bnannually,havingamajorimpactonaglobalindustryworthUS3 bn annually, having a major impact on a global industry worth US19 bn per annum. Shrimp are cultured predominantly in enclosed ponds that are subject to considerable fluctuations in abiotic conditions and WSD outbreaks are increasingly linked to periods of extreme weather, which may cause major fluctuations in pond culture conditions. Combined with the intensity of production in these systems, the resulting suboptimal physicochemical conditions have a major bearing on the susceptibility of shrimp to infection and disease. Current knowledge indicates that pond temperature and salinity are major factors determining outbreak severity. WSSV appears to be most virulent in water temperatures between 25 and 28 °C and salinities far removed from the isoosmotic point of shrimp. Elevated temperatures (>30 °C) may protect against WSD, depending on the stage of infection, however the mechanisms mediating this effect have not been well established. Other factors relating to water quality that may play key roles in determining outbreak severity include dissolved oxygen concentration, nitrogenous compound concentration, partial pressure of carbon dioxide and pH, but data on their impacts on WSSV susceptibility in cultured shrimps is scarce. This illustrates a major research gap in our understanding of the influence of environmental conditions on disease. For example, it is not clear whether temperature manipulations can be used effectively to prevent or mitigate WSD in cultured shrimp. Therefore, developing our understanding of the impact of environmental conditions on shrimp susceptibility to WSSV may provide insight for WSD mitigation when, even after decades of research, there is no effective practical prophylaxis or treatment.Centre for Environment, Fisheries and Aquaculture Scienc

    Green crab Carcinus maenas symbiont profiles along a North Atlantic invasion route

    Get PDF
    The green crab Carcinus maenas is an invader on the Atlantic coast of Canada and the USA. In these locations, crab populations have facilitated the development of a legal fishery in which C. maenas is caught and sold, mainly for use as bait to capture economically important crustaceans such as American lobster Homarus americanus. The paucity of knowledge on the symbionts of invasive C. maenas in Canada and their potential for transfer to lobsters poses a potential risk of unintended transmission. We carried out a histological survey for symbionts of C. maenas from their native range in Northern Europe (in the UK and Faroe Islands), and invasive range in Atlantic Canada. In total, 19 separate symbiotic associations were identified from C. maenas collected from 27 sites. These included metazoan parasites (nematodes, Profilicollis botulus, Sacculina carcini, Microphallidae, ectoparasitic crustaceans), microbial eukaryotes (ciliates, Hematodinium sp., Haplosporidium littoralis, Ameson pulvis, Parahepatospora carcini, gregarines, amoebae), bacteria (Rickettsia-like organism, milky disease), and viral pathogens (parvo-like virus, herpes-like virus, iridovirus, Carcinus maenas bacilliform virus and a haemocyteinfecting rod-shaped virus). Hematodinium sp. were not observed in the Canadian population; however, parasites such as Trematoda and Acanthocephala were present in all countries despite their complex, multi-species lifecycles. Some pathogens may pose a risk of transmission to other decapods and native fauna via the use of this host in the bait industry, such as the discovery of a virus resembling the previously described white spot syndrome virus (WSSV), B-virus and ‘rodshaped virus’ (RV-CM) and amoebae, which have previously been found to cause disease in aquaculture (e.g. Salmo salar) and fisheries species (e.g. H. americanus)

    Disposition of Federally Owned Surpluses

    Get PDF
    PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions

    Resistance to white spot syndrome virus in the European shore crab is associated with suppressed virion trafficking and heightened immune responses

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData availability statement: The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/, SRR14278211 - SRR14278323 and https://doi.org/10.6084/m9.figshare.21225128, as well as https://doi.org/10.6084/m9.figshare.21435831.INTRODUCTION: All decapod crustaceans are considered potentially susceptible to White Spot Syndrome Virus (WSSV) infection, but the degree of White Spot Disease (WSD) susceptibility varies widely between species. The European shore crab Carcinus maenas can be infected with the virus for long periods of time without signs of disease. Given the high mortality rate of susceptible species, the differential susceptibility of these resistant hosts offers an opportunity to investigate mechanisms of disease resistance. METHODS: Here, the temporal transcriptional responses (mRNA and miRNA) of C. maenas following WSSV injection were analysed and compared to a previously published dataset for the highly WSSV susceptible Penaeus vannamei to identify key genes, processes and pathways contributing to increased WSD resistance. RESULTS: We show that, in contrast to P. vannamei, the transcriptional response during the first 2 days following WSSV injection in C. maenas is limited. During the later time points (7 days onwards), two groups of crabs were identified, a recalcitrant group where no replication of the virus occurred, and a group where significant viral replication occurred, with the transcriptional profiles of the latter group resembling those of WSSV-susceptible species. We identify key differences in the molecular responses of these groups to WSSV injection. DISCUSSION: We propose that increased WSD resistance in C. maenas may result from impaired WSSV endocytosis due to the inhibition of internal vesicle budding by dynamin-1, and a delay in movement to the nucleus caused by the downregulation of cytoskeletal transcripts required for WSSV cytoskeleton docking, during early stages of the infection. This response allows resistant hosts greater time to fine-tune immune responses associated with miRNA expression, apoptosis and the melanisation cascade to defend against, and clear, invading WSSV. These findings suggest that the initial stages of infection are key to resistance to WSSV in the crab and highlight possible pathways that could be targeted in farmed crustacean to enhance resistance to WSD.University of Exeter (UK) Open Innovation PlatformCentre for Environment, Fisheries and Aquaculture Science (Weymouth, UK)Wellcome TrustBiotechnology and Biological Sciences Research Council (BBSRC

    Fractional Zaslavsky and Henon Discrete Maps

    Full text link
    This paper is devoted to the memory of Professor George M. Zaslavsky passed away on November 25, 2008. In the field of discrete maps, George M. Zaslavsky introduced a dissipative standard map which is called now the Zaslavsky map. G. Zaslavsky initialized many fundamental concepts and ideas in the fractional dynamics and kinetics. In this paper, starting from kicked damped equations with derivatives of non-integer orders we derive a fractional generalization of discrete maps. These fractional maps are generalizations of the Zaslavsky map and the Henon map. The main property of the fractional differential equations and the correspondent fractional maps is a long-term memory and dissipation. The memory is realized by the fact that their present state evolution depends on all past states with special forms of weights.Comment: 26 pages, LaTe
    • …
    corecore