295 research outputs found

    The Dynamics of the One-Dimensional Delta-Function Bose Gas

    Full text link
    We give a method to solve the time-dependent Schroedinger equation for a system of one-dimensional bosons interacting via a repulsive delta function potential. The method uses the ideas of Bethe Ansatz but does not use the spectral theory of the associated Hamiltonian

    NRG/RTOG 0837: Randomized, phase II, double-blind, placebo-controlled trial of chemoradiation with or without cediranib in newly diagnosed glioblastoma

    Get PDF
    BACKGROUND: A randomized, phase II, placebo-controlled, and blinded clinical trial (NCT01062425) was conducted to determine the efficacy of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, versus placebo in combination with radiation and temozolomide in newly diagnosed glioblastoma. METHODS: Patients with newly diagnosed glioblastoma were randomly assigned 2:1 to receive (1) cediranib (20 mg) in combination with radiation and temozolomide; (2) placebo in combination with radiation and temozolomide. The primary endpoint was 6-month progression-free survival (PFS) based on blinded, independent radiographic assessment of postcontrast T1-weighted and noncontrast T2-weighted MRI brain scans and was tested using a 1-sided RESULTS: One hundred and fifty-eight patients were randomized, out of which 9 were ineligible and 12 were not evaluable for the primary endpoint, leaving 137 eligible and evaluable. 6-month PFS was 46.6% in the cediranib arm versus 24.5% in the placebo arm ( CONCLUSIONS: This study met its primary endpoint of prolongation of 6-month PFS with cediranib in combination with radiation and temozolomide versus placebo in combination with radiation and temozolomide. There was no difference in overall survival between the 2 arms

    Multimodality imaging and mathematical modelling of drug delivery to glioblastomas

    Get PDF
    MAJC would like to thank the Isaac Newton Institute for Mathematical Sciences for its hospitality during the programme “Coupling Geometric PDEs with Physics for Cell Morphology, Motility and Pattern Formation” supported by EPSRC Grant Number EP/K032208/1.Patients diagnosed with glioblastoma, an aggressive brain tumour, have a poor prognosis, with a median overall survival of less than 15 months. Vasculature within these tumours is typically abnormal, with increased tortuosity, dilation and disorganization and they typically exhibit a disrupted blood brain barrier. Although it has been hypothesized that the “normalization” of the vasculature resulting from anti-angiogenic therapies could improve drug delivery through improved blood flow, there is also evidence that suggests that the restoration of blood brain barrier integrity might limit the delivery of therapeutic agents and hence their effectiveness. In this paper we apply mathematical models of blood flow, vascular permeability and diffusion within the tumour microenvironment to investigate the effect of these competing factors on drug delivery. Preliminary results from the modelling indicate that all three physiological parameters investigated – flow rate, vessel permeability, and tissue diffusion coefficient – interact nonlinearly to produce the observed average drug concentration in the microenvironment.PostprintPeer reviewe

    MRI Based Bayesian Personalization of a Tumor Growth Model

    Get PDF
    International audienceThe mathematical modeling of brain tumor growth has been the topic of numerous research studies. Most of this work focuses on the reaction-diffusion model, which suggests that the diffusion coefficient and the proliferation rate can be related to clinically relevant information. However, estimating the parameters of the reaction-diffusion model is difficult because of the lack of identifiability of the parameters, the uncertainty in the tumor segmentations, and the model approximation, which cannot perfectly capture the complex dynamics of the tumor evolution. Our approach aims at analyzing the uncertainty in the patient specific parameters of a tumor growth model, by sampling from the posterior probability of the parameters knowing the magnetic resonance images of a given patient. The estimation of the posterior probability is based on: i) a highly parallelized implementation of the reaction-diffusion equation using the Lattice Boltzmann Method (LBM), and ii) a high acceptance rate Monte Carlo technique called Gaussian Process Hamiltonian Monte Carlo (GPHMC). We compare this personalization approach with two commonly used methods based on the spherical asymptotic analysis of the reaction-diffusion model, and on a derivative-free optimization algorithm. We demonstrate the performance of the method on synthetic data, and on seven patients with a glioblastoma, the most aggressive primary brain tumor. This Bayesian personalization produces more informative results. In particular, it provides samples from the regions of interest and highlights the presence of several modes for some patients. In contrast, previous approaches based on optimization strategies fail to reveal the presence of different modes, and correlation between parameters

    Personalized Radiotherapy Planning Based on a Computational Tumor Growth Model

    Get PDF
    International audienceIn this article, we propose a proof of concept for the automatic planning of personalized radiotherapy for brain tumors. A computational model of glioblastoma growth is combined with an exponential cell survival model to describe the effect of radiotherapy. The model is personalized to the magnetic resonance images (MRIs) of a given patient. It takes into account the uncertainty in the model parameters, together with the uncertainty in the MRI segmentations. The computed probability distribution over tumor cell densities, together with the cell survival model, is used to define the prescription dose distribution, which is the basis for subsequent Intensity Modulated Radiation Therapy (IMRT) planning. Depending on the clinical data available, we compare three different scenarios to personalize the model. First, we consider a single MRI acquisition before therapy, as it would usually be the case in clinical routine. Second, we use two MRI acquisitions at two distinct time points in order to personalize the model and plan radiotherapy. Third, we include the uncertainty in the segmentation process. We present the application of our approach on two patients diagnosed with high grade glioma. We introduce two methods to derive the radiotherapy prescription dose distribution, which are based on minimizing integral tumor cell survival using the maximum a posteriori or the expected tumor cell density. We show how our method allows the user to compute a patient specific radiotherapy planning conformal to the tumor infiltration. We further present extensions of the method in order to spare adjacent organs at risk by redistributing the dose. The presented approach and its proof of concept may help in the future to better target the tumor and spare organs at risk

    ECCENTRIC: a fast and unrestrained approach for high-resolution in vivo metabolic imaging at ultra-high field MR

    Full text link
    A novel method for fast and high-resolution metabolic imaging, called ECcentric Circle ENcoding TRajectorIes for Compressed sensing (ECCENTRIC), has been developed and implemented on 7 Tesla human MRI. ECCENTRIC is a non-Cartesian spatial-spectral encoding method optimized for random undersampling of magnetic resonance spectroscopic imaging (MRSI) at ultra-high field. The approach provides flexible and random (k,t) sampling without temporal interleaving to improve spatial response function and spectral quality. ECCENTRIC needs low gradient amplitudes and slew-rates that reduces electrical, mechanical and thermal stress of the scanner hardware, and is robust to timing imperfection and eddy-current delays. Combined with a model-based low-rank reconstruction, this approach enables simultaneous imaging of up to 14 metabolites over the whole-brain at 2-3mm isotropic resolution in 4-10 minutes with high signal-to-noise ratio. In 20 healthy volunteers and 20 glioma patients ECCENTRIC demonstrated unprecedented mapping of fine structural details of metabolism in healthy brains and an extended metabolic fingerprinting of glioma tumors.Comment: 20 pages, 7 figures,2 tables, 10 pages supplementary materia

    Isolated central nervous system relapse of systemic lymphoma (SCNSL): clinical features and outcome of a retrospective analysis

    Get PDF
    We analyzed clinical outcome of patients with an isolated central nervous system lymphoma (CNSL) relapse after systemic non-Hodgkin’s lymphoma (NHL). All 23 patients with an isolated secondary CNSL (SCNSL) treated at two institutions from 04/2003–12/2007 were included into this analysis. At cerebral relapse, 15/23 patients were treated with a regimen consisting of high-dose methotrexate (Bonn protocol). After a median follow-up of 6.5 months (range 1–68), 15/23 (65%) patients with SCNSL had relapsed or progressed. HD (high-dose)- methotrexate (MTX) chemotherapy according to the Bonn protocol is effective concerning response rates; however, overall survival of patients with SCNSL seems to be impaired in comparison to relapses in primary CNSL (PCNSL)

    Targetable Signaling Pathway Mutations Are Associated with Malignant Phenotype in IDH-Mutant Gliomas

    Get PDF
    Purpose: Isocitrate dehydrogenase (IDH) gene mutations occur in low-grade and high-grade gliomas. We sought to identify the genetic basis of malignant phenotype heterogeneity in IDH-mutant gliomas. Methods: We prospectively implanted tumor specimens from 20 consecutive IDH1-mutant glioma resections into mouse brains and genotyped all resection specimens using a CLIA-certified molecular panel. Gliomas with cancer driver mutations were tested for sensitivity to targeted inhibitors in vitro. Associations between genomic alterations and outcomes were analyzed in patients. Results: By 10 months, 8 of 20 IDH1-mutant gliomas developed intracerebral xenografts. All xenografts maintained mutant IDH1 and high levels of 2-hydroxyglutarate on serial transplantation. All xenograft-producing gliomas harbored “lineage-defining” mutations in CIC (oligodendroglioma) or TP53 (astrocytoma), and 6 of 8 additionally had activating mutations in PIK3CA or amplification of PDGFRA, MET, or N-MYC. Only IDH1 and CIC/TP53 mutations were detected in non–xenograft-forming gliomas (P = 0.0007). Targeted inhibition of the additional alterations decreased proliferation in vitro. Moreover, we detected alterations in known cancer driver genes in 13.4% of IDH-mutant glioma patients, including PIK3CA, KRAS, AKT, or PTEN mutation or PDGFRA, MET, or N-MYC amplification. IDH/CIC mutant tumors were associated with PIK3CA/KRAS mutations whereas IDH/TP53 tumors correlated with PDGFRA/MET amplification. Presence of driver alterations at progression was associated with shorter subsequent progression-free survival (median 9.0 vs. 36.1 months; P = 0.0011). Conclusion: A subset of IDH-mutant gliomas with mutations in driver oncogenes has a more malignant phenotype in patients. Identification of these alterations may provide an opportunity for use of targeted therapies in these patients.Koch Institute Dana Farber/Harvard Cancer Center Bridge Projec

    Deformable image registration between pathological images and MR image via an optical macro image

    Get PDF
    Computed tomography (CT) and magnetic resonance (MR) imaging have been widely used for visualizing the inside of the human body. However, in many cases, pathological diagnosis is conducted through a biopsy or resection of an organ to evaluate the condition of tissues as definitive diagnosis. To provide more advanced information onto CT or MR image, it is necessary to reveal the relationship between tissue information and image signals. We propose a registration scheme for a set of PT images of divided specimens and a 3D-MR image by reference to an optical macro image (OM image) captured by an optical camera. We conducted a fundamental study using a resected human brain after the death of a brain cancer patient. We constructed two kinds of registration processes using the OM image as the base for both registrations to make conversion parameters between the PT and MR images. The aligned PT images had shapes similar to the OM image. On the other hand, the extracted cross-sectional MR image was similar to the OM image. From these resultant conversion parameters, the corresponding region on the PT image could be searched and displayed when an arbitrary pixel on the MR image was selected. The relationship between the PT and MR images of the whole brain can be analyzed using the proposed method. We confirmed that same regions between the PT and MR images could be searched and displayed using resultant information obtained by the proposed method. In terms of the accuracy of proposed method, the TREs were 0.56 ± 0.39 mm and 0.87 ± 0.42 mm. We can analyze the relationship between tissue information and MR signals using the proposed method
    corecore