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Personalized Radiotherapy Planning
Based on a Computational Tumor Growth Model

Matthieu Lê1, Hervé Delingette1, Jayashree Kalpathy-Cramer2, Elizabeth R. Gerstner3,
Tracy Batchelor3, Jan Unkelbach4, Nicholas Ayache1

Abstract—In this article, we propose a proof of concept
for the automatic planning of personalized radiotherapy for
brain tumors. A computational model of glioblastoma growth
is combined with an exponential cell survival model to describe
the effect of radiotherapy. The model is personalized to the
magnetic resonance images (MRIs) of a given patient. It takes
into account the uncertainty in the model parameters, together
with the uncertainty in the MRI segmentations. The computed
probability distribution over tumor cell densities, together with
the cell survival model, is used to define the prescription
dose distribution, which is the basis for subsequent Intensity
Modulated Radiation Therapy (IMRT) planning. Depending on
the clinical data available, we compare three different scenarios to
personalize the model. First, we consider a single MRI acquisition
before therapy, as it would usually be the case in clinical routine.
Second, we use two MRI acquisitions at two distinct time points in
order to personalize the model and plan radiotherapy. Third, we
include the uncertainty in the segmentation process. We present
the application of our approach on two patients diagnosed with
high grade glioma. We introduce two methods to derive the
radiotherapy prescription dose distribution, which are based on
minimizing integral tumor cell survival using the maximum a
posteriori or the expected tumor cell density. We show how our
method allows the user to compute a patient specific radiotherapy
planning conformal to the tumor infiltration. We further present
extensions of the method in order to spare adjacent organs at
risk by re-distributing the dose. The presented approach and its
proof of concept may help in the future to better target the tumor
and spare organs at risk.

Index Terms—Radiotherapy planning, computational tu-
mor growth model, personalization, uncertainty, segmentation,
glioblastoma

I. INTRODUCTION

H IGH grade glioma is one of the most common and
aggressive types of primary brain tumors. The treatment

of high grade glioma usually involves resection when possible,
followed by concurrent chemotherapy and radiotherapy.

Previous works on computational growth models for
gliomas have focused on reaction-diffusion equations to model
cell proliferation and infiltration into surrounding brain tis-
sue [1]. The model has been extended to model response
to chemotherapy, surgical resection, and radiotherapy. For
instance, a sink term can be added to the reaction-diffusion
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Figure 1. The clinical segmentation of the T1Gd abnormality (Top, orange
line) is used to define the clinical target volume (CTV, white dashed line) as a
2 cm expansion of the segmentation. In clinical settings, 60 Gy is prescribed
to the CTV. We propose to personalize the prescription dose (Bottom) to
account for tumor infiltration and segmentation uncertainty.

equation in order to model the impact of chemo or radio-
therapy [2], [3]. The resection of a brain tumor can also be
modeled by deleting the tumor cells in the resected region
[4], [5]. More advanced therapy schedules using for instance
anti-angiogenic drugs can also be studied with more complex
models [6], [7], [8].

In this article, we provide proof of concept of a method
for the automatic planning of personalized radiotherapy for
glioblastoma (Figure 1). The beneficial impact of radiotherapy
for glioblastoma patients has been clearly demonstrated [9],
[10]. However, its planning is made difficult by the infiltrative
nature of the disease, and the uncertainty in delineating the
abnormality in Magnetic Resonance Images (MRI). To account
for the tumor infiltration, a margin of 1 to 3 cm is added to the
abnormality visible on MRI to define the clinical target volume
(CTV) [11] (Figure 1). The exact extent of this margin is left
at the discretion of the clinician.
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Figure 2. Summary of the method: the segmentation of the tumor on the different MRIs is used to personalize the tumor growth model. This is combined
with a dose response model to define the prescription dose. Finally, the delivered dose is optimized using 9 equally spaced coplanar photon beams. The color
code indicates which data is used for the different scenarios: one or two MRI acquisition at two different time points, the clinical segmentations or plausible
samples to take into account the segmentation uncertainty.

Figure 3. First time point on the left, second time point on the right. (Top)
The proliferative rim is outlined in orange on the T1Gd MRI. (Middle Top)
The edema is outlined in red on the T2-FLAIR MRI. The edema encloses
the proliferative rim. (Middle Bottom) Tumor cell density computed with the
reaction-diffusion model. The black (resp. white) line is the threshold values
τ1 (resp. τ2 ) corresponding to the T1Gd (resp. T2-FLAIR) abnormality.
(Bottom) Comparison between the clinician segmentation and the contours
from the model.

In order to account for the infiltrative nature of the tumor,
several studies recently proposed to personalize radiotherapy
planning based on a computational growth model. Corwin et
al. [12], [13] personalized spherically symmetric doses based
on a 1D reaction-diffusion tumor growth model using the
T1Gd and T2-FLAIR abnormalities radius as observations
[14], [15]. In this framework, they showed that personalizing
the delivered dose could improve therapy in terms of days
gained by the patients. However, this spherically symmetric
assumption prevents taking into account boundaries of the
tumor progression such as the ventricles. Unkelbach et al.
[16], [17] studied the optimization of the radiotherapy planning
based on a tumor growth model in order to automatically
define realistic 3D prescription dose distributions, taking into
account the natural boundaries and privileged pathways of the
tumor progression. The proposed planning was personalized
to the patients geometry, but without personalizing the tumor
growth model parameters.

In this article, we extend previous works by personalizing
a 3D tumor growth model in order to define radiotherapy
prescription doses. This allows one to automatically compute
realistic 3D prescription doses conformal to the tumor infiltra-
tion (see Figure 1). Moreover, we study the impact of taking
into account the uncertainty in the different inputs of the model
(segmentations and model parameters). We use a tumor growth
model based on a reaction diffusion equation, which models
the infiltrative spread of tumor cells in the surrounding white
and gray matter. A Bayesian approach is taken to estimate
the posterior distribution over the model parameters based
on the MRIs of the patient. A recently proposed method to
sample plausible image segmentations is used to incorporate
uncertainty in the segmentation of the tumor in the MR
images [18]. The tumor growth model is then combined
with an exponential cell survival model to describe the effect
of radiotherapy. The probability distribution over tumor cell
densities, together with the cell survival model, is used to
define the prescription dose distribution, which is the basis
for subsequent Intensity Modulated Radiation Therapy (IMRT)
planning. The scope of this paper is the personalization of
radiotherapy planning. As such, we focus on patients which
were not treated with surgical resection. The proposed model
could however be extended in order to included the impact of
such therapy following the developments done in [4], [5].
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In this article, we consider three different scenarios. In
the first one, we only consider a single MRI acquisition of
the T1Gd and T2-FLAIR MRI before therapy planning. This
scenario is the closest to the clinical setting where radiotherapy
planning is usually based on a single MRI acquisition. In the
second, we consider two MRI acquisition at two time points
for a total of four MRIs: the T1Gd and T2-FLAIR at the first
and second time point (see Figure 3). In the third scenario, we
include the uncertainty in the segmentation of the abnormality
visible on the different MRIs to the personalization strategy.
The second and third scenarios are proofs of concept of a
method to include additional information to the personalized
therapy pipeline. We acknowledge that patients are usually
subject to therapy between the two time points, and as such,
the growth model personalization is biased by the impact of
therapy. Note however that if the therapy does not result in a
decrease of the tumor volume, its impact is implicitly taken
into account in the personalization of the growth parameter.

Based on those different scenarios, we propose three prin-
cipled approaches to compute the prescription dose. First, we
minimize the surviving fraction of tumor cells after irradiation
for the most probable tumor cell density. Second, we minimize
the expected survival fraction tumor cells after irradiation.
Third, we present an approach to correct the prescription dose
to take into account the presence of adjacent organs at risk.

The generation of different plausible segmentations based
on the clinical ones is presented in Section II. The forward
model of tumor growth is presented in Section III. The
personalization method for the three different scenarios is
presented in Section IV. The three principled approach for
the personalization of the dose response model to define the
prescription dose and the IMRT is detailed in Section V. A
summary of the method is illustrated in Figure 2. To our
knowledge, this is the first work that uses a personalized model
of brain tumor growth taking into account the uncertainty in
tumor growth parameters and the clinician’s segmentations in
order to optimize radiotherapy planning.

II. SEGMENTATION SAMPLES

The T1Gd abnormality, which is the active part of the tumor,
and the larger T2-FLAIR abnormality, which is usually called
the edema, were segmented by a clinician. In order to take
into account the uncertainty in the segmentation, we propose
to randomly modify the original clinician segmentations. The
method is based on [18], where samples of such segmentations
are generated from a high dimensional Gaussian process,
as the zero crossing of a level function. The samples are
efficiently produced on the regular grid using the separability
and stationary properties of the squared exponential covariance
function (see [18] for details). The samples take into account
the image intensity information using the signed geodesic
distance as the mean of the Gaussian process.

Segmentation samples for the T1Gd and T2-FLAIR abnor-
malities at the first and second time points are generated. Let
S0
i denote the clinical segmentations for the T1Gd and T2-

FLAIR abnormalities at the first and second time points, where
the index i = 1, ..., 4 refers to the 4 available images (see

Figure 3). Let Si =
{
Ski
}
k=1,...,K

denote sets of K plausible
segmentations per modality and time point, where each Ski is
a plausible sample from S0

i , the i-th clinician segmentation.
Figure 4 shows examples of such samples for K = 5. The

samples automatically respect the boundaries of the tumor
progression such as the ventricles, because of the presence
of large intensity gradients. The five presented samples per
abnormality correspond to an average DICE of 87%, which is
comparable to the inter-expert DICE measured in the BraTS
Challenge for brain tumors delineation [19]. Comparing the
output of the forward tumor growth model with these plausible
noisy segmentations allows to include the uncertainty of the
original clinician segmentations.

Note that other approaches could allow the handling of
segmentation uncertainty. For instance, one could compare the
output of the tumor growth model with probabilistic segmen-
tation approaches which have been proposed for glioblastoma
[20].

III. TUMOR GROWTH MODEL

The tumor growth model is based on the reaction-diffusion
equation,

∂u

∂t
= ∇(D.∇u)︸ ︷︷ ︸

Diffusion

+ ρu(1− u)︸ ︷︷ ︸
Logistic Proliferation

(1)

D∇u.−→n ∂Ω = 0 (2)

Equation (1) describes the spatio-temporal evolution of the
tumor cell density u, which infiltrates neighboring tissues with
a diffusion tensor D, and proliferates with a net proliferation
rate ρ. Equation (2) enforces Neumann boundary conditions
on the brain domain Ω. Following [21], we define the diffusion
tensor as D = dw I in the white matter, and D = dw/10 I in
the gray matter, where I is the 3x3 identity matrix. Below, we
identify the scalar parameter dw with D.

The solution of the reaction-diffusion equation (1) is a
tumor cell density u computed over the whole brain domain.
However, parts of the brain that glioblastomas usually do not
invade were excluded from the tumor simulation such as the
CSF or the cerebellum. In order to relate the tumor cell density
u to the MRIs, the frontier of the visible abnormalities is
assumed to correspond to a threshold value of the tumor cell
density u. We note τ1 the value of the tumor cell density u
corresponding to the frontier of the T1Gd abnormality, and
τ2 the value corresponding to the frontier of the T2-FLAIR
abnormality (see Figure 3).

The initialization of the tumor cell density u(t = t1, x) at
the time of the first acquisition is of particular importance, as it
impacts the rest of the simulation. In this work, the tumor tail
extrapolation algorithm described in [22] is used. The method
is based on the assumption that the solution of equation
(1) at the first time point has converged to its asymptotic,
traveling wave type solution. Thereby, the tumor cell density
is propagated outward (and inward), starting from the T1Gd
segmentation, and drops approximately exponentially with
distance. The steepness of the falloff, i.e. the distance at which
the cell density drops by a factor 1/e is given by the invisibility
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index λ =
√
D/ρ . By construction of the initialization, the

T1Gd abnormality falls exactly on the threshold τ1 of the
tumor cell density at the first time point.

The reaction-diffusion equation is solved using the Lattice
Boltzmann Method [21], [23], [24] which allows for easy
parallelization and fast computations. On a 1mm×1mm×1mm
resampled MRI, simulating 30 days of growth takes approxi-
mately 50 seconds on a 2.3Ghz 50 core machine.

Note that this model is an approximation of the complex
growth of the disease. For instance, it could be extended
in order to include mass effect [25], or a more detailed
description of the disease [6]. In other works, this model
has been extended to model different types of therapy such
as resection [26], [5], chemotherapy [2], or anti-angiogenic
therapy [7]. The common approach taken in these works is
to add a death term to the reaction-diffusion equation, which
allows to model the shrinkage of the tumor due to the therapy.
It was also shown in [27] that the personalized parameters
of a reaction-diffusion model were good predictors of certain
mutations status of the patient.

IV. PERSONALIZATION

The personalization of the tumor growth model is combined
with a dose response model in order to define the radiotherapy
planning. We compare three different scenarios. First we only
use a single time point (the second acquisition) to personalize
the model such that the radiotherapy plan will be defined using
a single acquisition, similarly to what is being done in clinic.
Second we use two time points in order to personalize the
model. The radiotherapy plan will then be defined on the latest
acquisition. Third, we use two time points and include the
uncertainty in the segmentation.

A. Scenario 1: One time point only

In this section, we are interested in the posterior probability
of the model parameter θ = (D, ρ), knowing the clinical
segmentations S0

3 on the T1Gd and S0
4 on the T2-FLAIR at

the second time point. To cast the problem in a probabilis-
tic framework, we follow the Bayes rule: P (θ|S0

3 , S
0
4) ∝

P (S0
3 , S

0
4 |θ) P (θ). The likelihood is modeled as

P (S0
3 , S

0
4 |θ) ∝ exp

(
− H(D, ρ, S0

3 , S
0
4)2

σ2

)
(3)

where H(D, ρ, S0
3 , S

0
4) is the 95th percentile of the symmet-

ric Hausdorff distance between the border of the segmentation
S0

4 , and the isoline at τ2 of the simulated tumor cell density
u using (D, ρ), and initialized with the segmentation S0

3 .
We further model the prior as log-uniform and independent
between the parameters,

P (θ) = P (D)P (ρ) (4)

We sample from the posterior distribution using a
Metropolis-Hasting algorithm. Note that this section only
uses the initialization algorithm (see Section III) which only
depends on the invisibility index λ =

√
D/ρ. Note that this

section can be related to the method described in [16], where a
single time point is used to propose a dose planning. However,
Unkelbach et al. [16] use a nominal value of the invisibility
index whereas it is personalized in this scenario. Moreover,
the Bayesian methodology allows to take into account the
uncertainty in the personalization.

B. Scenario 2: Two time points

In this section, we are interested in the posterior probability
of the model parameter θ = (D, ρ), knowing the clinical
segmentations S0

i for i = 1, 2, 3, 4 on the T1Gd and T2-FLAIR
at the first and second time point respectively. In this case, the
likelihood is model as

P ({S0
i }i=1,2,3,4|θ) ∝ exp

(
− 1

σ2

(∑4
i=2Hi(D, ρ, S

0
1 , S

0
i )

3

)2)
(5)

where Hi(D, ρ, S
0
1 , S

0
i ) is the 95th percentile of the sym-

metric Hausdorff distance between the border of the segmen-
tation S0

i for i = 2, 3, 4, and the isoline of the simulated
tumor cell density u using (D, ρ), and initialized with the
segmentation S0

1 . We model the prior as described in Section
IV-A.

We sample from the posterior distribution using the Gaus-
sian Process Hamiltonian Monte Carlo (GPHMC) algorithm
first described by [28], and used for tumor growth personal-
ization in [21].

C. Scenario 3: Two time points and segmentation uncertainty

In this section, we want to include the uncertainty in the
segmentation to the personalization process. We denote the set
of plausible segmentations by S = {Si}i=1,2,3,4 (see Section
II). We introduce the random variables Zi = (Zi1, ...,ZiK)
for i = 1, 2, 3, 4, which are one-hot binary vectors where
P (Zij = 1|S) ∝ P (Sji ), and Zil = 0 for l 6= j when Zij = 1.
The random variable Zi is a measure of the plausibility
of the samples: P (Zi) =

∏K
i=1 P (Zij = 1)Zij . We are

interested in the posterior probability of the model parameter
θ = (D, ρ,Z1,Z2,Z3,Z4), knowing the observations S. We
model the likelihood as

P (S|θ) ∝ exp

(
− 1

σ2

(∑4
i=2Hi(D, ρ,Z1,Zi)

3

)2)
(6)

where Hi(D, ρ,Z1,Zi) is the 95th percentile of the sym-
metric Hausdorff distance between the border of the segmen-
tation indexed by Zi, and the isolines of the simulated tumor
cell density u using (D, ρ), and initialized with the contour
selected with Z1. We model the prior independent between
the parameters, log-uniform for D and ρ, and uniform for Zi
(i.e. P (Zij = 1) = 1/K),

P (θ) = P (D)P (ρ)

4∏
i=1

P (Zi) (7)
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We sample from the posterior distribution using the
GPHMC like in Section IV-B. The only difference is that at
each iteration, we randomly sample segmentations from the
prior P (Zi).

V. RADIOTHERAPY PLANNING

In this section, we detail how we use the personalization
of the tumor growth model in order to define the best radio-
therapy plan at the time of the second acquisition. We start by
coupling the growth model with a cell survival model (Section
V-A). We then detail how to compute the prescription doses
in Section V-B, and how to compute the delivered dose in
Section V-C.

A. Cell survival

Cell survival after irradiation is often modeled using the
linear-quadratic model. In this article, we follow the deriva-
tions of [16], and consider the linear approximation of the
linear-quadratic model. In this framework, the density of
surviving tumor cells s after irradiation with a cumulative dose
d in Gray (Gy = Joules / kg) is given by

s = u exp(−ᾱd) (8)

where u is the tumor cell density before irradiation, and ᾱ
is the radiosensitivity parameter, corrected for the fact that we
consider a linear approximation of the linear-quadratic model.

B. Prescription Dose Optimization

A prescription dose can be defined as the dose minimizing
the surviving fraction of tumor cells. This is formally defined
as the dose solving the following optimization problem [16],

minimize
d

f(d, u) =
∑
j∈I

uj exp(−αdj) (9)

subject to
∑
j∈I

dj ≤ dint (10)

dj ≥ 0 (11)

where I is the set of voxels in the image. Equation (9) aims
at minimizing the number of surviving tumor cells. Equation
(10) constrains the integral dose to be lower or equal to a
user defined value dint, in order to avoid the trivial solution of
delivering an infinite dose. The parameter dint can be defined
based on clinical considerations related to the total dose a brain
can tolerate. Equation (11) constrains the dose to be positive.

The optimal prescription dose can be found by setting the
derivative of the corresponding Lagrangian to zero, resulting
in

di = max

[
0,

1

ᾱ
ln

(
uiᾱ

µ

)]
(12)

where µ is the Lagrange multiplier for the constraint (10).
This solution leads to a surviving tumor cell density s = µ/ᾱ
where the dose is strictly positive, and s < µ/ᾱ elsewhere.

Figure 4. From top to bottom: segmentation samples for the T1Gd at the first
and second time points, and for the T2-FLAIR at the first and second time
points. The sample are generated independently for the different time points
and modalities. The different colors correspond to the different samples. The
original clinical segmentation S0

i for i = 1, 2, 3, 4 is in red on the different
modalities.

A local maximum dose constraint of 60 Gy following clinical
recommendation can also be included.

The personalization of the tumor growth model provides
samples {θl} from the posterior distribution P (θ|S). We
propose three principled methods to compute prescription
doses based on the computed samples.

1) MAP Dose: The MAP (Maximum A Posterior) dose
is defined as the dose minimizing the surviving fraction of
the most probable tumor cell density denoted as u(θMAP) .
This dose does not take into account the uncertainty in the
personalization.

2) Probabilistic Dose: The probabilistic dose is defined
as the dose minimizing the expectation of the surviving
fraction of tumor cells. This expectation can be estimated using
samples from the posterior distribution as follows,

Eθ [f(d, u(θ))] = Eθ

[∑
i∈I

ui(θ) exp(−αdi)

]
(13)

'
∑
i∈I

1

N

∑
θ

ui(θ) exp(−αdi) (14)

'
∑
i∈I

ûi exp(−αdi) (15)

' f(d, û) (16)

where û = 1
N

∑
θ u(θ) is the empirical mean of the

tumor cell density. Computing the probabilistic dose is then
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Figure 5. MAP (Top), mean (Middle) and standard deviation (Bottom) of
the tumor cell density at the second time point computed with 100 random
samples of the posterior, when taking into account two time points and the
uncertainty in the segmentations. From left to right: axial, coronal, and sagittal
views. The brainstem is outlined in white, and the confined target volume T
is outlined with a dashed white line. The arrows indicate regions of varying
uncertainty above the brainstem (see Figure 14).

equivalent to minimizing the fraction of surviving tumor cells
using the empirical mean tumor cell density û.

3) Corrected Dose: The corrected dose is defined as the
prescription dose corrected for the presence of neighboring
organs at risk (OARs). We minimize the surviving fraction of
tumor cell density minus the surviving fraction of the OARs
cell density (i.e. we penalize the death of OAR cells) as
follows,

minimize
d

f(d, û)− δf(d, βc) (17)

where β is the standard deviation map of the tumor cell
density (Figure 5), c is the cell density of the OARs, and δ
is a factor which weighs the impact of the correction. The
term βc translates the fact that we only consider the impact of
the OARs in the regions of high uncertainty in the tumor cell
density. Note that f(d, û)− δf(d, βc) = f(d, û− δβc). Hence
taking into account the OARs is equivalent to minimizing the
original problem using the corrected tumor cell density û −
δβc.

C. IMRT Planning

We optimize an Intensity Modulated Radiation Therapy
(IMRT) plan using 9 equally spaced coplanar 6MV photon
beams and a piece-wise quadratic objective function, as de-
tailed in [16], [17]. Dose-calculation is performed using the
software CERR [29].

VI. RESULTS

We first present the results for one high grade glioma
patient. This patient was not subject to surgical resection,
but was under a complex treatment of concurrent chemo- and

Figure 6. Normalized histogram of the distribution of the invisibility index
λ =

√
D/ρ. The distribution using a single time point t2 is more peaked

(in black) than using two time points (in red), or two time points and the
segmentation uncertainty (in blue).

radiotherapy. We picked two time points separated by 28 days
which revealed a visible growth large enough to conduct our
experiments.

The threshold for the T1Gd and T2-FLAIR abnormalities
is set to τ1 = 80% and τ2 = 16% respectively [26]. The log-
uniform prior is bounded such that D ∈ [10−4, 10] mm2/days,
and ρ ∈ [10−5, 10] days−1, and we use a noise level of
σ = 5mm for the likelihood.

For the scenario 1, 4000 thousand samples are drawn from
the posterior with a normal distribution with standard deviation
0.3 for the proposal function, leading to an acceptance rate of
30%. For scenarios 2 and 3, 2000 samples are drawn from the
posterior distribution, leading to an acceptance rate of 60%.

Figure 6 shows the histograms of the invisibility index λ =√
D/ρ. Including the second time point, and the uncertainty in

the segmentation, increases the uncertainty in the invisibility
index. Indeed, the histogram is more peaked when using a
single time point than when including the second time point.
It also results in a larger invisibility index. Figure 7 shows
the samples from the posterior density of the parameters D
and ρ knowing the considered segmentations when using two
time points (Left) and when including the uncertainty in the
segmentation (Middle). We can see that the presence of two
close modes in the region of high probability disappears when
the uncertainty in the segmentation is considered. The samples
reveal an asymmetric posterior distribution where the mode
and mean are different, suggesting that the probabilistic and
MAP dose distributions will be different as well. Moreover,
the histograms of the random variable Zi for i = 1, 2, 3, 4
(Figure 7 Right) show that all the segmentation samples are
equally probable.

Figure 3 (Right) shows the most probable tumor cell density
taking into account the uncertainty in the segmentation, along
with the extracted contours for the T1Gd and T2-FLAIR
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abnormalities. Note that the tumor infiltration is approximated
in the regions of tumor necrosis. Indeed, clinician sometimes
excluded the necrotic core from the segmentation of the
T1Gd abnormality. This is usually not the case (inconsistency
between clinicians), and we chose in this paper to use the raw
clinical segmentation as input. However, this has actually very
little impact on the delivered dose because the necrotic core
is surrounded by regions targeted with an important dose. In
the sequel, we use 100 random samples from the posterior to
compute the empirical mean and the standard deviation of the
tumor cell density for the three scenarios.

Figure 8 shows the personalized tumor cell density profile
extracted along two different lines at the second time point
in the case of scenario 3, along with the boundaries of the
segmentation samples. This allows to visualize the uncertainty
in the computed tumor cell density. Figure 5 shows the axial,
coronal, and sagittal views of the 3D empirical mean and
standard deviation of the tumor cell density at the second
time point for scenario 3. Those two figures highlights the
two sources of uncertainty for scenario 3: the segmentation,
and the tumor infiltration.

The integral dose constraint is set equal to the total dose
a patient would receive during a treatment following standard
guidelines [11]. For that, we simulate a clinical target vol-
ume (CTV) by expanding the T1Gd abnormality visible on
the second time point with a 2 cm margin. To respect the
boundaries of the tumor progression - much like a clinician
would do - we define the CTV as the isoline of the average
tumor cell density using only the second time point which is
totally included in a 2 cm expansion of the T1Gd abnormality.
The clinical radiotherapy planning prescribes 60 Gy to the
CTV, and 0 elsewhere (see Figure 9 Top). The corresponding
dose distribution resulting from IMRT planning is shown
in Figure 10 (Top). We then set dint = 4.4e + 07Gy.mm3

which corresponds to the IMRT dose delivered to the brain
tissues (i.e. excluding the skull and cerebrospinal fluid). The
radiosensitivity parameter ᾱ is set to 0.35 1/Gy.

Figure 9 shows the prescription MAP doses in the three
scenarios: i) using only the second time point, ii) using
the two time points, iii) using the two time points and the
segmentation uncertainty. In accordance with the histograms
of invisibility index (Figure 6), we can see that the MAP dose
using a single time point is more shallow compared to the
doses using two time points (see the arrows on the different
views of Figure 9). Furthermore, there is almost no difference
between scenario 2 and 3, i.e. whether or not segmentation
uncertainty is incorporated. Figure 10 shows the corresponding
IMRT optimization of the MAP doses. It is apparent that
the differences between the doses is largely mitigated by the
smoothing effect of IMRT planning. This is confirmed by
Figure 13 (Left) which shows the DICE coefficient of the 50
Gy isolines of the different dose distributions before and after
the IMRT optimization: the DICE coefficient is greater (on
average 95%) after IMRT than before (on average 91%).

Figure 11 shows the probabilistic prescription doses in the
three scenarios. In this case, the difference between the sce-
narios is small (see the DICE coefficients on Figure 13 right).
However, we can note that the infiltration of the prescription

dose is greater for the scenarios taking into account the two
time points, contrary to what is the case for the MAP doses
(see the arrows on the axial view of Figure 11). This is
because the larger uncertainty in the invisibility index leads
to a smoother falloff of the dose. Moreover, the effect of
taking into account the uncertainty in the segmentations can
be seen on the coronal view (see the arrows in Figure 11). A
part of the tumor near the cerebellum receives higher doses in
the third scenario. This is because this tumor is located near
boundaries of tumor progression and therefore, the delineation
of the segmentation has a big impact. Figure 12 shows that this
effect is still present after IMRT optimization (see the arrows
on the coronal view of Figure 12).

Figure 14 shows a sagittal view of the corrected dose
(Top) for different values of δ, and the corresponding IMRT
dose (Bottom). The total amount of dose is the same for the
three presented doses since they respect the dose constraint.
However, because of the correction factor, the dose prescribed
inside the brainstem (outlined in white) is being redistributed
to other regions of the brain where the brainstem cell density
and the uncertainty in the tumor cell density is lower. The
white arrows on Figure 14 and 5 (sagittal view) show how the
part of the dose where the tumor cell density is lower and the
uncertainty higher (arrow on the right) is reduced whereas the
dose where the tumor cell density is higher and the uncertainty
lower (arrow on the left) is not redistributed. This translates
in reduced delivered dose after the IMRT optimization. This
can be more clearly observed by looking at the dose volume
histograms on Figure 15. One can see that, with increasing
values of δ, the dose delivered to the brainstem is reduced.

The method was applied to a second patient for which the
two MRI acquisitions are 31 days apart. Figure 16 shows
the histograms of the invisibility index for the three differ-
ent scenarios. Including the second time point results in a
larger uncertainty and lower invisibility index. Including the
segmentation uncertainty does not have a noticeable impact
on the invisibility index. This results in a prescription MAP
dose which is more concentrated to the target volume for the
scenarios 2 and 3 compared to scenario 1 (see Figure 17).
However - and similarly to the first patient - the prescription
probabilistic dose is slightly more spread out for the scenarios
2 and 3 compared to scenario 1 (see Figure 18). This is due
to the increase in uncertainty when taking into account the
second time point. The figures for the second patient can be
found in the supplementary material.

VII. DISCUSSION

Extensions of the model could be considered in order
to include the noise level σ, the thresholds τ1, and τ2, as
free parameters of the model. We detail subsequently the
motivations behind our choices, and the difficulty which could
arise in considering such extensions. The value of σ is related
to the level of noise in the mean Hausdorff distance. We chose
a value of 5mm which is in agreement with the Hausdorff
distances corresponding to the Maximum A Posteriori which
ranges from 4.8 to 12.4 mm for the presented patients. This
level of noise allows to explore the parameter space, and to
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Figure 7. Posterior density of the joint probability P (D, ρ|S) using only the clinical segmentations (Left) and taking into account the uncertainty in the
segmentations (Middle). The colorbar indicates the negative log likelihood of the samples (yellow unlikely, blue very likely). The most probable sample is
indicated with the crossing solid red lines, the mean is indicated with the dashed red lines. The histograms of the random variable Zi are on the right: the
bar plot corresponds to the number of time the sample j of the segmentation i has been selected (i.e. Zij = 1).

Figure 8. Visualization of the 3D tumor cell density profile extracted along 2
lines (in orange on Figure 4, identified by an orange number). The empirical
mean of the tumor cell density is the solid black line, and the shaded area
encloses the 10th to 90th percentiles. The colored crosses corresponds to the
boundaries of the different segmentations visible on Figure 4 with the same
color code.

Figure 9. Prescription MAP doses in Gray for the clinical plan and the three
different personalized plans. From top to bottom: clinical plan, using only the
second time point, using the two time points, using the two time points and
the segmentation uncertainty. From left to right: axial, coronal, and sagittal
views.

Figure 10. IMRT MAP doses in Gray for the clinical plan and the three
different personalized plans. From top to bottom: clinical plan, using only the
second time point, using the two time points, using the two time points and
the segmentation uncertainty. From left to right: axial, coronal, and sagittal
views. The arrows emphasize the difference of falloff between the different
scenarios.

focus on a region of interest which is in accordance with
the lowest distances found. It was set manually after a few
experiments. The noise level σ could be considered as a
parameter to be tuned during the personalization. However,
it raises the question of computing the normalization factor of
the likelihood which depends on sigma in order to properly
compute the Metropolis-Hastings acceptance ratio. We fol-
lowed [30] to set the value of τ1 and τ2. The threshold values
could be included as a parameters of the model. However, we
did not include it in this study for several reasons. First, there
is a biological interpretation behind those values (detectable
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Figure 11. Prescription probabilistic doses in Gray for the clinical plan and the
three different personalized plans. From top to bottom: clinical plan, using
only the second time point, using the two time points, using the two time
points and the segmentation uncertainty. From left to right: axial, coronal,
and sagittal views. The arrows emphasize the difference of falloff between
the different scenarios.

Figure 12. IMRT probabilistic doses in Gray for the clinical plan and the
three different personalized plans. From top to bottom: clinical plan, using
only the second time point, using the two time points, using the two time
points and the segmentation uncertainty. From left to right: axial, coronal,
and sagittal views. The arrows emphasize the difference of falloff between
the different scenarios.

Figure 13. DICE coefficient of the dose binarized with a 50 Gy threshold
for the different scenarios: using only one time point (OTP), using two time
points (TTP), using two time points and the segmentation uncertainty (TTPS).
The DICE coefficient is presented for the MAP doses (Left) and probabilistic
doses (Right), and for the prescription doses (light blue) and the IMRT doses
(light pink). One can note that the TTP and TTPS scenarios are the closest,
and that the IMRT optimization reduces the differences between the doses.

Figure 14. Prescription (Top) and IMRT (Bottom) doses in Gray for increasing
values of δ (from left to right). We can see that with increasing δ, the dose
around the brainstem is re-distributed (see the arrows).

threshold of tumor cell density), and we think the different
possible values cannot be distinguished by the model since,
for two sets of thresholds (τ1, τ2) and (τ ,1, τ

,
2) , several values

of D and ρ will result in similar segmentations. This was
investigated in [21] where the models with different values
of (τ1, τ2) were personalized. It was noted that changing
the thresholds only resulted in adjusted parameters. It was
quantified by showing that the statistical evidence of the
different models was not noticeably different. Second, this
adds complexity and increases the computational cost of the
method.

Figure 15. Dose volume histogram of the corrected dose for the brainstem
(solid line) and the target volume T (dashed line) for different values of δ.
The x axis is the dose and the y axis if the percentage of volume targeted with
this dose. Increasing the value of δ reduces the dose delivered to the brainstem
while keeping the dose delivered to the target volume T approximately
constant.
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Figure 16. Normalized histogram of the distribution of the invisibility index
λ =

√
D/ρ for the second patient. The distribution using a single time point

t2 is more peaked (in black) than using two time points (in red), or two time
points and the segmentation uncertainty (in blue).

Figure 17. Prescription MAP doses in Gray for the three different personalized
plans for the second patient. From top to bottom: clinical plan, using only the
second time point, using the two time points, using the two time points and
the segmentation uncertainty. From left to right: axial, coronal, and sagittal
views.

VIII. CONCLUSION

We presented the proof of concept for a method combining
a computational model of tumor growth with a dose response
model in order to optimize radiotherapy planning, which takes
into account the uncertainty in the model parameters and
the clinical segmentations. We presented and compared three
different scenarios. In the first one, we only consider one
MRI acquisition before therapy, as it would usually be the
case in clinical practice. In the second one, we use two time
points in order to personalize the model and plan radiotherapy.
In the third one, we include uncertainty in the segmentation
process. Based on these scenarios, we proposed three princi-
pled approaches to define patient specific dose prescriptions,
and discussed the difference between them. The MAP dose
minimizes surviving tumor cells after irradiation of the most
probable situation, while the probabilistic dose allows one to
take into account the uncertainty by minimizing the expected
surviving tumor cells. We showed that including a second

Figure 18. Prescription probabilistic doses in Gray for the three different
personalized plans for the second patient. From top to bottom: clinical plan,
using only the second time point, using the two time points, using the two
time points and the segmentation uncertainty. From left to right: axial, coronal,
and sagittal views.

time point increased the uncertainty in the invisibility index
and resulted in more shallow probabilistic doses. However, the
difference between the prescription doses are partly smoothed
out by IMRT optimization. We also showed that including
the uncertainty in the segmentation did not change the re-
sults substantially. Considering the large number of potential
sources of uncertainty for radiotherapy planning, we think the
most conservative approach is to use the probabilistic dose
personalized with time points and segmentation uncertainty.
We also proposed an approach to redistribute dose in order
to take into account the uncertainty in the tumor cell density,
and the presence of neighboring OARs such as the brainstem.
We believe that this method could be beneficial in situations
when an organ at risk is located in an area that may or may
not be infiltrated by tumor cells.

In the future, the inclusion of the fractionation scheme
of the delivered dose could be optimized. In this case, the
personalization on two different time points before therapy
would be crucial in order to estimate the speed of growth of
the tumor, and simulate its progression during radiotherapy.
The impact of the presented planning should also be further
investigated on a larger cohort of patients. To that end, the
model should be extended in order to take into account the
complex therapy the patient is undergoing. As such, the model
could be applied to any presented patient given the therapy
schedule. Finally, it should be investigated if more conformal
dose delivery techniques such as proton therapy lead to IMRT
planning more conformal to the prescribed dose.
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