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MRI Based Bayesian Personalization of a
Tumor Growth Model

Matthieu Lê1, Hervé Delingette1, Jayashree Kalpathy-Cramer2, Elizabeth R. Gerstner3,
Tracy Batchelor3, Jan Unkelbach4, Nicholas Ayache1

Abstract—The mathematical modeling of brain tumor growth
has been the topic of numerous research studies. Most of this
work focuses on the reaction-diffusion model, which suggests
that the diffusion coefficient and the proliferation rate can be
related to clinically relevant information. However, estimating the
parameters of the reaction-diffusion model is difficult because of
the lack of identifiability of the parameters, the uncertainty in
the tumor segmentations, and the model approximation, which
cannot perfectly capture the complex dynamics of the tumor
evolution. Our approach aims at analyzing the uncertainty in the
patient specific parameters of a tumor growth model, by sampling
from the posterior probability of the parameters knowing the
magnetic resonance images of a given patient. The estimation of
the posterior probability is based on: i) a highly parallelized im-
plementation of the reaction-diffusion equation using the Lattice
Boltzmann Method (LBM), and ii) a high acceptance rate Monte
Carlo technique called Gaussian Process Hamiltonian Monte
Carlo (GPHMC). We compare this personalization approach with
two commonly used methods based on the spherical asymptotic
analysis of the reaction-diffusion model, and on a derivative-
free optimization algorithm. We demonstrate the performance
of the method on synthetic data, and on seven patients with
a glioblastoma, the most aggressive primary brain tumor. This
Bayesian personalization produces more informative results. In
particular, it provides samples from the regions of interest and
highlights the presence of several modes for some patients. In
contrast, previous approaches based on optimization strategies
fail to reveal the presence of different modes, and correlation
between parameters.

Index Terms—tumor growth, glioblastoma, reaction-diffusion,
personalization, bayesian, LBM, Monte Carlo

I. INTRODUCTION

A. Motivations

THE objectives of the mathematical modeling of brain
tumor growth are fourfold. First, it could help to better

understand the mechanisms behind the disease progression [1].
Second, the personalization of such models to specific patients
could allow one to quantify the aggressiveness of the tumor,
which has been shown to be correlated with clinically relevant
information [2], [3]. Third, personalized models could help
predicting the future evolution of a given tumor [4]. Fourth,
personalized models could lead the way toward objective and
more efficient personalized therapy. For instance, it has already
been used in order to personalized radiotherapy plans [5], [6].
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Figure 1: (Left) The proliferative rim is outlined in orange on the
T1Gd MRI at two different time points; (Middle Left) The edema is
outlined in red on the T2-FLAIR MRI at two different time points.
The edema encloses the proliferative rim; (Middle Right) Tumor cell
density computed with the reaction-diffusion model. The black (resp.
white) line is the threshold values τ1 (resp. τ2) corresponding to the
T1Gd (resp. T2-FLAIR) abnormality; (Right) Comparison between
the clinician segmentation and the contours from the model.

In this article, we present a method to study the uncertainty
in the patient specific parameters of a tumor growth model. To
do so, we estimate the posterior probability of the parameters,
which allows us to analyze the correlation between the per-
sonalized parameters of the model. Moreover, it gives valuable
information on the confidence one has in the estimation and the
ability of the model to explain the data. The method is based
on the Bayesian personalization of a tumor growth model.
We specifically apply it to the personalization of glioblastoma
growth using a reaction-diffusion model. We detail the results
on one synthetic - but realistic - case, and 7 patients.

B. Clinical Background

Gliomas account for 30% of primary brain and central ner-
vous system tumors. They are characterized by their infiltrative
nature: malignant cells invade the tissue by progressing along
the white matter fiber tracts. They can either be low grade or
high grade, and very well localized or extremely diffused. We
focus on grade IV gliomas called glioblastomas multiformes
(GBM). They are the most common glioma - at least 50%
of the recorded cases, and an incidence of 3.19 per 100,000
[7]. They grow extremely rapidly, and are the most malignant
primary brain tumors.
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C. Modeling: Previous Work

The modeling of the tumor evolution can be done at differ-
ent scales [8]. On the microscopic scale, the model describes
the evolution of individual cells based on division and invasion
rules. On the macroscopic scale, the model describes the
spatio-temporal evolution of the tumor cell density in the
considered domain, based on partial differential equations.
Over the last 20 years, particular attention has been given to
the reaction-diffusion equation,

∂u

∂t
= ∇(D.∇u)︸ ︷︷ ︸

Diffusion

+ ρu(1− u)︸ ︷︷ ︸
Logistic Proliferation

(1)

D∇u.−→n ∂Ω = 0 (2)

θ = (D, ρ) (3)

Equation (1) describes the spatio-temporal evolution of the
tumor cell density u, which infiltrates neighboring tissues with
a diffusion tensor D, and proliferates with a net proliferation
rate ρ. Equation (2) enforces Neumann boundary conditions on
the brain domain Ω, and θ denotes the parameters of interest
of the model.

In 1989, Murray et al. [9] pioneered on the use of mathemat-
ics applied to brain tumor growth, using the reaction-diffusion
equation with an exponential growth. Assuming an isotropic
diffusion in an infinite domain, he relates the velocity v of
the tumor growth to the proliferation rate ρ and the diffusion
coefficient D, v = 2

√
ρD. This work has lead the way to

numerous other studies [10], [11], [12].
Improving the computational efficiency of tumor growth

models has been the topic of several studies. In 2010,
Konukoglu et al. [13] introduced an approximation of the
asymptotic solution of the reaction-diffusion equation based on
an Eikonal equation, which can be solved with a Fast Marching
algorithm, resulting in drastically reduced computation times.
In 2012, Mosayebi et al. [14] introduced a similar method to
compute the tumor invasion in the brain parenchyma based on
a geodesic distance computed from DTI information.

The mass effect applied by the tumor to the surrounding
tissues has been modeled in 2005 by Clatz et al. [15]. They
coupled the reaction-diffusion equation with a mechanical
model, to take into account the mass effect, i.e. the displace-
ment of adjacent brain tissue due to the growing tumor. They
relate the diffusion tensor D to the Diffusion Tensor Images
(DTI), thus forcing the tumor cells to preferably follow the
white matter fiber tracts. In 2008, Hogea et al. [16] proposed
another approach to include mass effect, using a reaction-
diffusion-advection model coupled with a Eulerian mechanical
framework.

Finally, research efforts recently targeted the development of
more complex models. In 2011, Swanson et al. [17] developed
a model dividing the tumor cells into sub-categories: the
proliferative, the invasive and the hypoxic cells. This type of
complex models has been further developed by Saut et al. [18]
in 2014, in which they developed a coupled PDE-based model
to simulate the growth of high grade gliomas seeded in real
images. Finally, the models were extended to take into account
the apparition of edema during the growth [19], [20].

D. Personalization: Previous Work

It is of particular interest to solve the inverse problem of
estimating the model’s parameter θ = (D, ρ), which can
describe a specific dynamic observed for a patient. As such,
the modeling effort goes hand in hand with the personalization
work. For personalization, most methods rely on comparing
the model estimation with the abnormalities visible on Mag-
netic Resonance Images (MRIs) at two different time points.

A common approach to personalize reaction-diffusion equa-
tions is based on the observation that they admit wave-like
solutions whose parameters can be related to the volume of the
abnormalities observed on MRIs. In 2007, Harpold et al. [21]
described the personalization of a glioma growth model using
the reaction-diffusion equation with an exponential growth.

Another popular approach relies on solving the inverse
problem using an optimization strategy. Hogea et al. [16]
formulated a PDE-constrained optimization problem to esti-
mate the parameters of the model based on image registration.
Konukoglu et al. [13] used the derivative-free optimization
algorithm BOBYQA (for bounded optimization by quadratic
approximation) [22] to minimize the distance between the tu-
mor segmentations observed on the MRI, and the output of the
model. In 2012, Gooya et al. [23] proposed a method for the
segmentation and registration of MRIs presenting glioblastoma
based on the personalization of a reaction-diffusion-advection
model using a single time point acquisition.

Finally, probabilistic approaches recently gained interest
to solve complex inverse problems. Menze et al. [24] was
among the first to propose a Bayesian formulation for brain
tumor growth personalization, based on the approximation of
the posterior using sparse grids. It is interesting to note that
Bayesian formulations have been used for a few years in the
field of cardiac modeling [25], [26]. However, the methods
usually rely on approximations of the forward model using
reduced order model, such as the polynomial chaos, to make
the estimation of the posterior using Markov Chain Monte
Carlo (MCMC) computationally tractable.

E. Contributions of the Paper

In this paper, we propose a Bayesian method for the per-
sonalization of a tumor growth model based on the reaction-
diffusion equation. We propose the use of the Lattice Boltz-
mann Method (LBM) to implement the tumor growth model
which results in reduced computation times. This is combined
with a high acceptance rate Monte Carlo technique called
the Gaussian Process Hamiltonian Monte Carlo (GPHMC).
Contrary to previous approaches, our method does not rely
on approximations of the forward model (resp. posterior
probability) using reduced order models [25], [26] (resp.
sparse grid methods [24]). We compare our approach to two
methods adapted from the literature. The former is based
on the spherical asymptotic analysis of the forward model,
inspired by the work of Swanson et al. [21], [5]. The latter
is based on the gradient-free optimization method BOBYQA,
and is used in the work of Konukoglu et al. [13].

This paper extends [27] with a comparison with a spherical
asymptotic analysis of the personalization, and more com-
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prehensive analysis on 3 additional patients. Also, a new
likelihood model based on the 95th percentile of the Hausdorff
distance is used, as well as a new log-uniform prior for
the parameters of interest. Finally, the parameters of the
GPHMC have been updated to increase the robustness of the
personalization: i) the initialization of the Gaussian process
is now done with a coarse grid to ensure that the whole
space of parameters is covered, ii) the parameters of the
Gaussian process are set by maximizing the likelihood, iii)
the noise level of the likelihood model has been reduced from
σ = 10 mm in [27] to σ = 5 mm in order to increase the
focus on the region of interest (i.e. the posterior is more peaked
when the noise level is lower).

II. MODEL

A. The Reaction-Diffusion Model

Because of the logistic reaction term, equation (1) does not
have a closed form solution. However, in an infinite domain,
with constant proliferation rate and diffusion coefficient, equa-
tion (1) admits solutions which asymptotically behave like
traveling waves with speed v = 2

√
ρD [13]. This solution has

the asymptotic form u(x, t) = u(x− vt) = u(ζ). Plugging it
into equation (1), we get the ordinary differential equation

n′Dn
d2u

dζ2
+ v

du

dζ
+ ρu(1− u) = 0 (4)

where n is the direction of motion in the infinite domain.
Moreover, linearizing equation (4) for small u << 1, meaning
that u(1− u) ∼ u, we get the second order linear equation

n′Dn
d2u

dζ2
+ v

du

dζ
+ ρu = 0 (5)

which admits solutions of the form u(ζ) = (Aζ +
B) exp(−x/λ) with A,B two constants, and λ =

√
D/ρ.

This equation shows that the parameter λ is of particular
importance: it is related to the spatial decay of the tumor cell
density, and it is referred to as the invisibility index [5].

In the case of GBM growth modeling, it is clinically
admitted that tumor cells have higher motility in white matter,
compared to gray matter. Some work has been conducted to
relate the diffusion tensor D to DTI - see [28], [29] for a
detailed discussion. In this work, for simplification, we follow
[21], and define the diffusion tensor as D = dw I in the
white matter, and D = dw/10 I in the gray matter, where
I is the 3x3 identity matrix, and dw a scalar parametrizing the
diffusion tensor. We further identify the parameter D with dw.
As such, the diffusion is heterogeneous and locally isotropic.
This model reproduces the infiltrative nature of the GBM,
takes into account anatomical barriers (ventricles, sulci, falx
cerebri), and the tumor’s preferential progression along white
matter tracts such as the corpus callosum.

B. Model and MRIs

Data driven GBM growth modeling is based on the acqui-
sition of different MRI modalities routinely acquired: T1 with
Gadolinium contrast agent (T1Gd) and T2 Fluid-Attenuated

Inversion Recovery (T2-FLAIR). They reveal different parts of
the tumor: the active part, or proliferative rim can be observed
on the T1Gd, while the T2-FLAIR reveals the disruption
of the extacellular matrix, or edema. The T1Gd abnormality
is usually included inside the larger T2-FLAIR abnormality
(Figure 1). The personalization of the growth of the tumor is
based on two consecutive time points, resulting in a total of
four abnormalities segmented by the clinician.

We can immediately see one of the pitfalls of most models:
the tumor cell density is not directly visible on T1Gd and
T2-FLAIR MRIs. They rather reveal the impact of the tumor
growth on the brain. In order to relate the tumor cell density
u - solutions of (1) - to the MRIs, the frontier of the visible
abnormalities is assumed to correspond to a threshold value
of the tumor cell density u. We note τ1 the value of the
tumor cell density u corresponding to the frontier of the T1Gd
abnormality, and τ2 the value corresponding to the frontier
of the T2-FLAIR abnormality. The invisibility index defined
in the previous section is related to the distance between
the boundaries of the T1Gd abnormality and the T2-FLAIR
abnormality: the larger the distance, the larger the invisibility
index is.

III. SIMULATION

A. Preprocessing of the data

The pre-processing of the MRIs is of particular importance
(Figure 2). The T1Gd and T2-FLAIR abnormalities were
segmented by a clinician, and the fractional anisotropy (FA)
MRI was extracted from the DTI. First, the segmentations of
the second time point t2 are mapped on the space of the first
time point t1 as follows. i) For each visit, the T2-FLAIR and
FA MRIs are rigidly registered to the T1Gd MRI [30]. ii) The
T1Gd MRI at t2 is non-linearly registered to the T1Gd MRI at
t1 using the FNIRT function of the FSL software [31], [32].
The segmentation of the tumor at t2 is used to exclude the
tumor from the similarity criterion (sum-of-squared difference)
during the registration. As such, the intensity values in the
tumor are ignored, and the tumor is warped in accordance
with the surrounding (non-masked) tissues. iii) The resulting
transformations are applied to transport the T2-FLAIR abnor-
malities at t1 and t2, and the T1Gd abnormality at t2, on
the T1Gd MRI at t1. Second, white and gray matter, and
cerebrospinal fluid (CSF) are extracted from MRIs at t1. The
pipeline is the following i) Extract the brain from the skull
[33]. ii) Correct for the bias and segment the white matter,
gray matter, and CSF [34]. iii) Separate the left and right
hemispheres [35], iv) The voxels at the boundary between
the two hemispheres are tagged as CSF, in order to prevent
the tumor from invading the contra-lateral hemisphere through
the falx cerebri. The voxels with high FA value (> 0.45)
and which were tagged as white matter are not affected
by this process in order to ensure that the corpus callosum
stays segmented as white matter. The red circle on Figure
2 emphasizes the importance of the hemisphere separation to
label the falx cerebri as CSF, and the corpus callosum as white
matter.
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Figure 2: First row: Registration pipeline at time t1 of the T1Gd, T2-
FLAIR, and FA. Middle row: Registration pipeline at time t2 of the
T1Gd, and T2-FLAIR. Bottom row, from left to right: segmentation
of the left and right hemispheres to ensure the falx cerebri is labeled
as CSF; gray matter segmentation; white matter segmentation.

B. Lattice Boltzmann Method

A typical approach to implement the reaction-diffusion
equation is to discretize the equation using the Crank-Nicolson
scheme [36]. This requires the inversion of a large sparse
matrix n × n where n is the number of voxels in the image,
using a preconditioned gradient method like the biconjugate
gradient stabilized method. For 3D MRIs with n ∼ 106,
this approach is computationally expensive. In this paper,
we use the more recent explicit method called the Lattice
Boltzmann Method (LBM). LBM has been successfully ap-
plied to implement the reaction-diffusion equation in the fields
of cardiac electrophysiology modeling [37], [26], and liver
tumor radiofrequency-ablation [38]. The idea is to model the
reaction-diffusion equation as a set of fictitious particles which
collide and stream on the cartesian grid. Using the D3Q7
scheme (3 dimensions and 7 velocities), the solution of the
reaction-diffusion equation (1) is discretized u =

∑6
α=0 uα,

where α indexes the 7 different velocity directions {eα}6α=0

in the 3D cartesian grid (i.e. the considered voxel and its six
immediate neighbors).

[e0, e1, e2, e3, e4, e5, e6, ] =

 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1


Furthermore, according to the connectivity of the grid, a
weight vector {wα}6α=0 = [1/4, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8]
is defined . The algorithm, as described in [39], consists of
4 steps: i) Initialization, ii) Collision, iii) Streaming, and iv)
Neumann boundary conditions. During the initialization, we
set uα = wαu, for every α. The collisions of the fictitious

particles is then modeled with

∀α u∗α = uα −
6∑
i=0

Aα,iui + ∆t wα ρu(1− u)

where A = M−1SM ∈ R7×7 is the collision matrix. M
projects a vector on the moment space, and S is the relaxation
time matrix,

M =



1 1 1 1 1 1 1
0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1
6 −1 −1 −1 −1 −1 −1
0 2 2 −1 −1 −1 −1
0 0 0 1 1 −1 −1



S−1 =



τ0 0 0 0 0 0 0
0 τxx τxy τxz 0 0 0
0 τxy τyy τyz 0 0 0
0 τxz τyz τzz 0 0 0
0 0 0 0 τ4 0 0
0 0 0 0 0 τ5 0
0 0 0 0 0 0 τ6


with τij = 1/2δij + 4∆t/(∆x2)Dij , τk = 1.33, and D is
the diffusion tensor. The value of τk does not impact the
convergence of the solution but rather the stability of the
method. A value of 1.33 has been found to lead to reasonable
results [37]. During the streaming step, for every α, we have
uα(x + δx eα, t + δt) = u∗α(x, t). Finally, we enforce the
Neumann boundary conditions with the equations

uα̃(x, t+ δt) =
1

2∆
uα(x, t) +

2∆− 1

2∆
uα̃(x, t) (6)

uα̃(x, t+ δt) =2∆uα(x, t) + (1− 2∆)uα(x−∆x eα, t)
(7)

where α̃ refers to the velocity of opposite directions than α,
and ∆ is the distance between the fictitious particle and the
boundary [40] (see Figure 3). We use equation (6) if ∆ > 1/2
and equation (7) otherwise.

With a diffusion coefficient constant in time, the LBM does
not require costly inversion of matrices. The LBM is easily
parallelized such that simulating 30 days of growth, with δt =
0.1 day, takes approximately 50 seconds on a 2.3 Ghz 50 core
machine for a 1 mm isotropic 155× 182× 157 grid.

C. Initialization

The initialization of the tumor cell density u(t = t1, x) at
the time of the first acquisition is of particular importance,
as it impacts the rest of the simulation. In this work, the
tumor tail extrapolation algorithm described in [41] is used.
The tumor cell density is computed outward (and inward)
of the T1Gd abnormality borders as a static approximation
of the wave-like solution of equation (1) with parameter θ.
The algorithm is based on the recursive approximation of
equation (4) for current values of the solution u. It only
depends on the invisibility index λ =

√
D/ρ. The details

of the implementation can be found in [41]. By construction
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Figure 3: Cartesian grid with a boundary. Picture adapted from [40]

of the initialization, the T1Gd abnormality falls exactly on the
threshold τ1 of the tumor cell density at the first time point
(Figure 1).

IV. PERSONALIZATION

We describe in this section the personalization of the
parameter θ = (D, ρ) of the reaction-diffusion equation (1).
Three different methods with increasing levels of complexity
are presented. The first two are adapted from the literature,
and are compared to the last one which we propose for the
Bayesian personalization.

The first method (Section IV-A) is based on Swanson’s
approach [21], [5]. The spherical asymptotic analysis of the
solution in a large domain is used to relate the invisibility
index to the measured radii of the T1Gd and T2-FLAIR
abnormalities, using multiple runs of the forward model.

The second method (Section IV-B) is based on [13] where
the derivative-free optimization method BOBYQA is used to
infer the parameters D and ρ. In this article, we apply it to the
case of glioblastoma where two abnormalities are observable
at each time point. We do not optimize for the source point
of the tumor since we initialize the model with the contour of
the first T1Gd abnormality.

Finally, we propose to estimate the posterior probability of
the parameters D and ρ, knowing the clinician segmentations,
using a MCMC method, the Gaussian Process Hamiltonian
Monte Carlo.

A. Spherical Asymptotic Analysis

The parameters D and ρ can be related to the asymptotic
velocity v = 2

√
Dρ, and the invisibility index λ =

√
D/ρ.

The knowledge of the velocity and invisibility index uniquely
identifies D and ρ since D = vλ/2 and ρ = v/(2λ). As
such, given a patient and the segmented T1Gd and T2-FLAIR
abnormalities, we want to infer the parameters (v, λ) from the
measured radius of the abnormality through their measured
volume. We hypothesize that there is a simple relationship
between those radii, and the velocity and the invisibility
index [21]. We consider the special case of an isotropic and
homogeneous domain with a Gaussian initialization. The speed
of growth can be measured as the temporal variation of the
radial expansion of the abnormalities over time (Figure 4
left). Since the distinct speed of growth of the T1Gd and T2-
FLAIR abnormalities can be measured (and can be different),

we use the geometric mean between the two, v =
√
v1v2,

as an estimate. We propose in this section to find a simple
relationship between the invisibility index, and the measured
radii of the T1Gd and T2-FLAIR abnormalities (see Figure
4).

The tumor growth model was run on a large 201×201×201
1 mm isotropic grid, with different parameters D and ρ, for
200 days, and initialized with a symmetric Gaussian. Using 15
equally spaced values of D ∈ [0.02 1.5] mm2.day−1, and 15
equally spaced values of ρ ∈ [0.002 0.2] day−1, 225 simula-
tions were performed, keeping 11 time points per simulations.
For each time point, we considered the value of the radii
of the T1Gd and T2-FLAIR abnormality (resp. rT2−FLAIR

and rT1Gd), using thresholds of τ1 = 80% and τ2 = 16%.
We observe a good linear relationship between the invisibility
index λ, and the radius difference (rT2−FLAIR − rT1Gd)
(Figure 5),

λ =

√
D

ρ
= a (rT2−FLAIR − rT1Gd) + b (8)

with a = 0.13 and b = 0.23 mm for D in mm2.day−1 and
ρ in day−1. We further checked that the measured velocity
corresponded to the asymptotic one (Figure 5).

In this paper, we consider the personalization using two time
points. Since the invisibility index can be measured on both
time points, similarly to the speed, we use the geometric mean
between the two as an estimate. This personalization is based
on volumetric consideration, and valid in large homogeneous
domain, much like Swanson’s approach [21], [5].

B. BOBYQA Optimization

The previous method does not take into account the in-
homogeneity and anisotropy of the growth, and does not
account for anatomical barriers such as CSF. In order to
derive a finer estimation, we use an optimization method.
We need to define the error corresponding to a simulation
with associated parameter θ. The simulation is initialized at
t1 using the first T1Gd abnormality, and simulated with the
LBM until the second time point t2 is reached. We extract the
simulated contours corresponding to the thresholds τ1 and τ2,
at t1 and t2. The 95th percentile of the symmetric Hausdorff
distance between the borders of the clinician segmentation
and the extracted contours is computed for: i) the T2-FLAIR
abnormality at time t1, ii) the T2-FLAIR abnormality at time
t2, iii) the T1Gd abnormality at time t2. The mean of these
distances Hmean is used as an error measure for the simulation.
We use this error measure because the Hausdorff distance
is sensitive and independent to the size of the abnormality.
As such, the T1Gd and T2-FLAIR will be penalized in a
similar fashion. Other error measures could be considered such
as the DICE coefficient, which is however sensitive to the
size of the abnormalities. We minimize the error using the
derivative-free optimization algorithm BOBYQA [22], using
the implementation of the library NLopt1. The algorithm is

1Steven G. Johnson, The NLopt nonlinear-optimization package, http://ab-
initio.mit.edu/nlopt
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Figure 4: 1D graphical explanation detailing how the measured radii are related to the invisibility index and speed of growth of the tumor.
(Left) Relationship between the invisibility index and the speed of the tumor, and the parameters D and ρ of the model. (Right) 1D tumor
cell density at two different time points detailing how the measured radii are related to the parameters of the model.

Figure 5: (Left) Example of simulations on a large cube with different parameters D and ρ used to infer the relationship between the
invisibility index and the measured radii. (Middle) Invisibility index (

√
D/ρ) function of rT2−FLAIR − rT1Gd. The blue dots result from

the LBM simulations in the square, the red line is the linear fit. (Right) Asymptotic speed (2
√
Dρ) function of the measured radial growth

speed. The blue dots result from the LBM simulations, the red line is the first bisector.

run 9 times with 9 different initializations to explore various
local minima. We keep the best of the 9 solutions. This
personalization is in the spirit of Konukoglu’s work [13], but
applied to glioblastomas.

C. Bayesian Personalization

We denote by S the set of clinician segmentations the model
should fit. We are interested in the posterior probability of the
model parameter θ = (D, ρ), knowing the observations S. To
cast the problem in a probabilistic framework, we follow Bayes
rule: P (θ|S) ∝ P (S|θ) P (θ). The likelihood is modeled as
P (S|θ) ∝ exp(−H2

mean/σ
2), where the distance Hmean is

the mean of the 95th percentile symmetric Hausdorff distance
between the border of the segmentations S and the isolines of
the simulated tumor cell density u using θ, and the thresholds
τ1 and τ2. As such, the negative log-likelihood H2

mean/σ
2 is

the error term optimized during BOBYQA, normalized with
the noise level σ. P (θ) is the prior on the parameters of the
model. We want to estimate the posterior distribution P (θ|S).
To do so, samples are drawn from the posterior probability
using the Gaussian Process Hamiltonian Monte Carlo [42].

Hamiltonian Monte Carlo (HMC). HMC is a Markov
Chain Monte Carlo algorithm which uses a refined proposal
density function based on the Hamiltonian dynamics [43].
The idea is to have a high acceptance rate while proposing
points relatively far from the current point. The problem is
augmented with a momentum variable p ∼ N (0, I). By
randomly sampling p, we define a current state (θ,p). The
energy of the state is H(θ,p) = Epot + Ekin, with poten-
tial energy Epot = − log(P (S|θ)P (θ)), and kinetic energy

Figure 6: (Left) Synthetic growth of a tumor in the MNI atlas
during 30 days with D = 1 mm2.day−1 and ρ = 0.18 day−1.
The T2-FLAIR abnormality (isodensity of τ2 = 16%) is outlined
in red. The T1Gd abnormality (isodensity of τ1 = 80%) is out-
lined in orange. (Right) Limits of the asymptotic personalization
in presence of boundaries. The infiltration length - proportional to
rT2−FLAIR − rT1Gd - tends to be under-estimated by considering
the equivalent spherical volumes.

Ekin = 1/2 ||p||22. Using the Hamiltonian dynamics for a
certain period of time ∆tH ,

dθi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂θi

(9)

a new state (θ∗,p∗) is proposed, with energy H(θ∗,p∗).
Using a Metropolis-Hastings acceptance criterion, the
new state (θ∗,p∗) is accepted with probability A =
min [1, exp(−H(θ∗,p∗) + H(θ,p))]. The conservation of the
energy during the Hamiltonian dynamics - up to the numerical
discretization accuracy of the Leapfrog scheme - insures a high
acceptance rate A, which is the ratio of proposed samples
which are accepted. The boundary conditions on the bounded
parameter space θ are enforced using a bounce back condition
[44] during the Leapfrog scheme used for the time integration.
More precisely, if during the computations, the parameter θ
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Figure 7: Comparison with a simple grid estimation of the posterior
using 34 × 34 = 1156 model evaluations in the admissible domain
for the synthetic case. The zoom to the region of low potential energy
( i.e. high probability) proves the value of the presented method. The
color scale indicates the negative log-likelihood.

crosses a boundary, its moment p is reversed and projected on
the normal of the boundary.

Gaussian Process Hamiltonian Monte Carlo (GPHMC).
In the HMC, computing the Hamiltonian dynamics - equations
(9) - requires a significant amount of model evalutations. To
circumvent this difficulty, Epot is approximated with a Gaus-
sian process [42]. During the initialization phase, the forward
model is evaluated on a coarse grid to initialize the Gaussian
process. During the exploration phase, the forward model is
evaluated at locations of low Epot and high uncertainty on the
Gaussian process interpolation (details can be found in [42]).
HMC is then run using the Gaussian process interpolation of
Epot to compute the Hamiltonian dynamics. Given that the
Gaussian process well captures Epot, the GPHMC benefits
from the high acceptance rate of the HMC, with far less model
evaluations.

Parameters. The parameter θ is constrained such that
D ∈ [10−4, 10] mm2/days, and ρ ∈ [10−5, 10] days−1,
which encloses expected values for glioblastomas [21]. The
prior P (θ) is assumed log-uniform within this bounded box.
The Hamiltonian dynamics is run for ∆tH = 60 days.
For the likelihood, the noise level σ has been empirically
set to 5 mm to provide a reasonable acceptance rate. The
noise level influences how peaked the estimated posterior
will be. For the GPHMC, the Gaussian process is defined
with a squared exponential covariance matrix C(θ1,θ2) =
w0 exp(−||θ1 − θ2)||22/w2

1) [45], where ||.||2 is the l2 norm.
These parameters are estimated with maximum likelihood
[45]. During the GPHMC, the initialization is done with 49
forward model evaluations, while 50 evaluations are used for
the exploratory phase, then 1000 samples are generated.

V. RESULTS

A. Synthetic Case

We perform a thorough analysis of a synthetic - but realistic
- case. A simulation is run on the MNI atlas [46], with
parameters D = 1 mm2.day−1 and ρ = 0.18 day−1, for
30 days (Figure 6). The result of the 3 different personal-
ization methods can be seen on Figure 8. The result of the
BOBYQA optimization is close to the mode of the computed
posterior density. However, the spherical asymptotic analysis
personalization is largely under-estimating the diffusion pa-
rameter D with a solution of D = 0.41 mm2.day−1, when

D = 1.0 and 0.96 mm2.day−1 for the BOBYQA and the
Maximum a Posteriori (MAP) sample of the Bayesian solution
respectively. The asymptotic personalization method makes
the assumption that the T1Gd and T2-FLAIR abnormalities
are growing concentrically in an infinite domain. The presence
of boundaries in realistic growth leads to the under-estimation
of the difference of the radius of the abnormalities, leading to
the under-estimation of the infiltration length (Figure 6).The
acceptance rate during the GPHMC is 83%, reflecting the
fact that the Gaussian process is a good interpolation of the
potential energy Epot for the sampling.

The impact of the different parameters is analyzed on the
synthetic case (Figure 8). We can see that using a uniform prior
- like in [27] - results in samples which are more concentrated
in the regions of high values of D and ρ. However, it does
not change much the shape and the location of the mode. On
the other hand, using a noise level σ =

√
5 mm instead of

5 mm (with a log-uniform prior) results in a posterior which
is much more peaked around the same mode. Finally, using the
median Hausdorff distance instead of the 95th percentile (with
a log-uniform prior and σ = 5 mm) results in samples which
are more spread because this distance is less discriminative.
The effect is very similar to increasing the noise level σ.
Finally, the method is compared to a simple grid evaluation
of the potential energy for the synthetic case. The GPHMC
automatically sample an extremely high density of points in
the region of high probability, compared to the simplest grid
approach (Figure 7).

B. Glioblastoma Patients

The method is applied to 7 patients. The T1Gd and T2-
FLAIR abnormalities were segmented by a clinician. A sum-
mary of the results can be found on Table I. The patients
come from diverse clinical studies. We selected patients who
were not treated with resection, and where two time points
with visible growth were available. The patients were under
chemotherapy, radiotherapy, and other specific types of therapy
such as anti-angiogenic drug. This is one of the reasons
why we focus on personalization, and not on prediction. The
complex therapy schedule makes the prediction of the future
behavior of the tumor difficult.

The result of the estimation can be seen on Figure 9.
The personalization based on the asymptotic analysis tends
to provide low values of D and ρ. We observe the variety
of behavior of the posterior for the different patients. Figure
9 shows the best BOBYQA solution. The second and third
best solutions are only shown if they are distinguishable with
the first one at this scale, or if they fall in regions of low
potential energy. The best BOBYQA solution always falls
close to a mode of the posterior, but does not reflect the
correlation between the parameters D and ρ. Moreover, it is
worth mentioning that for every patient, some of the differently
initialized BOBYQA solutions lead to very poor results.

Patients 1, 2, and 3 present only one mode. The BOBYQA
solution gives good results, while the asymptotic analysis
always gives slightly off solutions. Patients 3, 6, and 7 present
two modes. The two modes are very close to each other for
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Figure 8: In the black box, (Left) i) Initialization of the Gaussian process interpolating the potential energy Epot with a a coarse 7× 7 grid
ii) Refinement of the Gaussian process with points of low potential energy and high uncertainty (see details in [42]) (Right) Personalization
of the tumor growth model for the synthetic case. The result of the asymptotic personalization is at the intersection of the dashed red lines,
the result of the BOBYQA optimization is at the intersection of the full red lines, and falls on the true parameters values at this scale. The
color scale indicates the negative log-likelihood. Outside of the black box, results of the GPHMC personalization for the synthetic case using
(from left to right, top to bottom) a uniform prior, a noise level σ =

√
5, and the median Hausdorff distance.

patients 6 and 7 while they are far apart for patient 3. This
reflects the fact that the model cannot explain simultaneously
the four available segmentations, and different sets of param-
eters lead to equivalently plausible solutions. For patient 5,
the BOBYQA solutions and spherical asymptotic analysis give
completely false result. This seems to be due to the fact that the
solutions lie near the boundary of the domain, which lead to
false convergence of the BOBYQA algorithm. For this patient,
the parameters tend to lie at the edge of the admissible domain
defined in Section IV-C.

The acceptance rate during the GPHMC is on average
72%. This high acceptance rate is an indication that the
Gaussian process is a good interpolation of the potential
energy. However, for some patients, the interpolation is not
as good resulting in acceptance rate of 52% (Patient 3) and
56% (Patient 7). This is mainly due to narrow regions of high
probability, where there are relatively few points to interpolate
the potential energy. Note that the parameters of the GPHMC
were the same for the seven different patients.

For a given patient, we can gather the samples in a matrix
X ∈ Rn×2, where n is the number of samples. We can project
the samples in the (log(λ), log(v)) space, and compute the
empirical covariance C,

C = cov

(
X

(
1
2

1
2

− 1
2

1
2

))
(10)

We then compute the normalized variances σinv and σspeed of
the posterior samples along the speed and invisibility index
axis respectively,

σinv =
C(1, 1)

Tr [C]
, σspeed =

C(2, 2)

Tr [C]
(11)

where Tr [ . ] refers to the trace of the matrix. This way,
we can quantify which of the invisibility index or speed is
better captured by the model. For instance, patient 3 presents

t2 − t1 (days) Acceptance rate (%) σspeed ( %) σinv ( %)

Synthetic 30 83 23 77
Pat. 1 105 84 45 55
Pat. 2 29 87 74 26
Pat. 3 26 52 99 1
Pat. 4 31 72 98 2
Pat. 5 14 77 98 2
Pat. 6 28 74 82 18
Pat. 7 29 56 83 17

Table I: Results on 7 patients: time span between the time points;
acceptance rate of the GPHMC; percentage of variance due to the
speed; percentage of variance due to the invisibility index.

an extremely elongated posterior along the line of constant
invisibility index (σinv = 1%, σspeed = 99%), showing
that the uncertainty on the fit is due to the speed rather
than the invisibility index. For patient 1, the posterior is
not as elongated, showing that the uncertainty due to the
speed or the invisibility index are more similar (σinv = 45%,
σspeed = 55%). This is probably caused by the fact that the
two time points are 105 days apart for patient 1. As such the
speed of growth of the tumor is more identifiable resulting in
a drop of the variance due to the speed compared to the other
patients. Similarly, the synthetic case presents a larger growth
which makes the identifiability of the speed easier.

We show the results of the simulation using the parameter
θ corresponding to the Maximum a Posteriori (MAP) of the
samples (Figure 10) for two representative patients. Further-
more, for each sample resulting from the GPHMC, one can
compute the corresponding segmentation for the T1Gd at the
second time point, and the T2-FLAIR at the first and second
time points. We can then compute the probability for each
voxel to lie within one of those segmentations. We show on
Figure 11 the 10% (in blue) and 90% (in green) isolines of
this probability mask which allows to visualize the uncertainty
in the MAP segmentation.
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Figure 9: Personalization of the tumor growth model for the 7 patients. The result of the asymptotic personalization is at the intersection of
the dashed red lines, the result of the BOBYQA optimization is at the intersection of the solid red lines. The presence of several BOBYQA
solutions from different initializations is indicated when the best three solutions were noticeably distinct. The color scale indicates the
negative log-likelihood of the posterior P (θ|S), which is equal to the potential energy Epot.
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Figure 10: Maximum a Posteriori fit for Patient 1 (Top) and Patient 4
(Bottom). For each patient: (Left) The proliferative rim is outlined in
orange on the T1Gd MRI at two different time points; (Middle Left)
The edema is outlined in red on the T2-FLAIR MRI at two different
time points; (Middle Right) Tumor cell density, the black (resp.
white) line is the threshold value τ1 (resp. τ2) corresponding to the
T1Gd (resp. T2-FLAIR) abnormality; (Right) Comparison between
the clinician segmentation and the contours from the model.

VI. DISCUSSION

In this work, we presented an efficient implementation of
the reaction-diffusion equation for the brain tumor growth
based on the Lattice Boltzmann Method. We further presented
estimation methods of the model’s parameters of different
levels of complexity. The simplest one is based on the asymp-
totic properties of the reaction-diffusion equation. It does not
require complex computations, but fails when the growth is
constrained by the brain boundaries. The second method is the
optimization of an error term using a derivative-free algorithm.
In our experiments, the method required on average 20 model
evaluations per initialization, resulting in 180 model evaluation
for a total of 9 different initializations. The third method is
based on an efficient Monte Carlo method called the Gaussian
Process Hamiltonian Monte Carlo, used to sample from a
posterior, derived as the Boltzmann distribution of the previous
error term. It requires a total of 1100 model evaluations. As
such, the estimation of the posterior probability requires only
6 times more evaluations than the direct optimization, and
provides additional valuable informations about the shape of
the posterior. This reveals the possible presence of several
modes, and the correlation between the parameters due to the
lack of identifiability of the speed or the invisibility index.

Moreover, the samples of the posterior density could be used
to estimate the density in the whole domain using for instance
kernel density estimation [27]. This could be helpful to have
access to other useful statistical indices such as the evidence
of the model, which can help answer questions about model
selection [47], [27].

In the future, we could consider the thresholds τ1 and τ2
as parameters of the model to be sampled. This could also be

Figure 11: (Top) Patient 2 (Bottom) Patient 4. From left to right:
T1Gd for the second time point, T2-FLAIR for the first time point,
T2-FLAIR for the second time point. The clinician segmentation are
in orange for the T1Gd and red for the T2-FLAIR.The blue outline
(resp. green) encloses the voxels which were present in at least 10%
(resp. 90%) of the segmentations deduced from the samples.

the case for the noise level σ. Moreover, the modeling of the
mass effect could be useful in order to avoid the non-linear
registration between the second and the first time points.

VII. PERSPECTIVES

In the future, we intend to apply the Bayesian personaliza-
tion in order to explicitly take into account the uncertainty in
the expert’s segmentation. More specifically, the segmentations
used during each model evaluation could be sampled in the
space of plausible segmentations [48]. We also believe that
this work could be used for automatic personalized therapy
planning. Some work has already been done on relating tumor
growth models to radiation response models to better define
radiation therapy plans [49], [50], [6]. Such a method could
provide personalized therapy plans taking into account the
uncertainty in the model’s parameters.
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