22 research outputs found

    Annex 65, Long-Term Performance of Super-Insulating-Materials in Building Components and Systems. Report of Subtask II: Scientific Information for Standardization Bodies dealing with Hygro-Thermo-Mechanical Properties and Ageing

    Get PDF
    This subtask is divided in two actions:Action 2A: Materials Assessment & Ageing Procedures (Experiments & Simulation)Action 2B: Components & Systems Assessment (Experiments & Simulation)As their structures and microstructures are completely different, Super-Insulating Materials (SIMs) cannot be compared directly to traditional insulating materials. Worldwide acceptance of these materials will be improved if the hygro-thermal and mechanical properties of SIM can be clearly articulated and reproduced. In particular, nano-structured materials used to manufacture a SIM are characterized by a high specific area (m\ub2/g) and narrow pores (smaller than 1 μm) which make them very sensitive to gas adsorption and condensation, especially in contact with water molecules.Therefore, methods of characterization must be adapted, or new methods developed to measure the microstructural, hygro-thermal and mechanical properties of these materials and their barrier films.In parallel, modelling methods to describe heat, moisture and air transfer through nano-structured materials and films will have to be developed (adsorption and desorption models, diffusion models, freeze-thawing …).Of course, a few methods will be common to all SIMs, but due to their structural differences some specific modelling methods have to be developed.SIMs can offer considerable advantages (low thickness, low Uvalue) ; however potential drawback effects should be considered in the planning process in order to optimise the development of these extraordinary properties (very low thermal conductivity) and to prevent negative publicity which could be detrimental to this sector of emerging products. This is why ageing tests will be set according to realistic conditions (temperature, moisture, pressure, load …) as set out in SubTask 3A. One objective of artificial ageing is to understand potential degradation processes that could occur. The durability of hydrophobic treatment is one of these processes and will also be subject to discussion and investigation.At the component scale, additional characterizations are needed as panels or rolls are sold by manufacturers. In particular, thermal bridges will be carefully investigated, as the extraordinary thermal performance of SIMs are sensitive to the influence of thermal bridges

    Annex 65, Long-Term Performance of Super-Insulating-Materials in Building Components and Systems. Report of Subtask III: Practical Applications – Retrofitting at the Building Scale – Field scale

    Get PDF
    More than 80% of the energy consumption will be influenced by the existing building stock. Accordingly, building renovation has a high priority in many countries. Furthermore, several studies have shown that the most efficient way to curb the energy consumption in the building sector (new & existing) remain the reduction of the heat loss by improving the insulation of the building envelope (roof, floor, wall & windows). All since the first oil crisis in 1973-1974, the national building regulations require improvement of the thermal performance of the building envelope to significantly reduce the energy use for space heating. Following the regulations, the energy efficiency of new buildings has improved. In Europe, targeting to an average U-value close to 0.2 W/m2\ub7K is optimal. Using traditional insulation materials this means an insulation thickness of about 20 cm. Thus, the thickness of internal and/or external insulation layers becomes a major issue of concern for retrofitting projects and even for new building projects in cities. Therefore, there is a growing interest in the so-called super-insulating materials (SIM). The scope of the present work covers two different types of SIMs:• Advanced Porous Materials (APM), where the gaseous heat transfer is hindered significantly by the fine structure in the sub-micrometre range, and• Vacuum Insulation Panels (VIP), where the contribution of gaseous conductivity to the total heat transfer is suppressed by evacuation.For Advanced Porous Materials (APM) one might distinguish between• porous silica e.g. based on fumed silica, and• aerogels.For Vacuum Insulation Panels (VIP) one might distinguish between:• different core materials: fumed silica, glass fibre, PU, EPS, others;• different envelopes: metalized film, aluminium laminate, stainless steel, glass, or combinations;• with or without a getter and/or a desiccant.The objective of this Annex 65 Subtask 3 report is to define the application areas of SIM and to describe the conditions of the intended use of the products. Indeed, it’s clear that the requested performance of the SIM will strongly depend on the temperature, humidity and load conditions. For building applications, storage, handling and implementation requirements are also described. Common and specific numerical calculations will be performed at the building scale to assess the impact of SIM on the performance of the building envelope.SIM was used in almost all building components with different environmental condition (boundary condition) and in different climate zone. The moisture and temperature conditions in building components can cause moisture/temperature induced stresses and the stresses can cause damage in sensitive super insulation material e.g. VIPs. Thus, to convince the conservative market of construction, it needs, in addition to laboratory measurements, real condition/environmental measurements of commercially realized objects (new buildings as well as refurbishments) under several years of operation.The long-term performance of super insulation materials has to be determined based on case studies in field and laboratory. Full scale experiments provide knowledge of practical and technical difficulties as well as data for service life estimation. For certain conclusions to be drawn from the case studies, monitoring is essential. Unfortunately, monitoring is only performed in few case studies. In this report these experiences are gathered and evaluated from a long-term performance perspective.APMs have been commercially successful in the building industry in niche applications typically with space restrictions since the early 2000s. Therefore, over the last years, a number of state-of-the-art reviews have focused on applications of advanced porous materials, such as aerogels, used as thermal insulation in buildings. VIPs, on the other hand, have also been used in other applications than buildings, such as refrigerators and transport boxes. The different applications areas have been identified by numerous researchers. However, in most studies of VIPs available in the literature, it was only the thermal performance of the assembly that was investigated. However, also the moisture performance is important to consider since changes to existing structures will influence the risk for moisture damages.In the Annex, the gathered case studies cover a wider range of SIM i.e. aerogel blankets, AB, (7 case studies), silica-based boards, SB, (3 case studies) and VIP (22 case studies). The aim was to gather information from projects where SIMs were used in different assemblies. Some of the projects have been monitored, i.e. sensors were installed to monitor the temperature, relative humidity or heat flux through the assemblies, while only three have been followed up, i.e. where a third party have analysed the results of the monitoring. The case studies are presented and specific and general conclusions from each application are made.The case studies showed that aerogel blankets are possible to install in up to five layers (50 mm) without too much difficulty. The evaluations showed that the performance of the aerogel blankets was maintained over the evaluation period. For VIPs, it is difficult to evaluate the performance when installed in the wall. In one of the case studies in the report, the external air space made it impossible to identify the different panels by thermography. Only indirect methods, like evaluation of the measured temperatures in the wall, can be used to follow the long-term performance of the panels. In another case study, hybrid insulated district heating pipes were installed at two locations in a district heating system with temperatures up to 90\ub0C. Measurements during the period 2012 to 2015 showed no sign of deterioration of the VIPs and the temperature profile over the pipes was constant. An existing masonry wall was insulated with VIP-foam sandwich (XPS-VIP-XPS). It showed satisfactory and promising performance for a period of six years (2011-present). The analysis of the data obtained from continuous temperature monitoring across each insulation layer indicated the aging of VIP remains insignificant.In the framework of IEA EBC Annex 65 a common simulation-based procedure was introduced with the scope to identify potential critical hygrothermal working conditions of the SIM, which were identified as main drivers of the ageing effect. The study highlights that some physical phenomena (such as thermal bridging effects, the influence of temperature on the thermal conductivity and the decay of performance over time depending on the severity of the boundaryconditions) should be carefully evaluated during the design phase in order to prevent the mismatch between expected/predicted and the actual thermal performance.As general guidelines to mitigate the severity of the operating conditions of VIP, a list of recommendation are in the following summarised:• For the external wall insulation with VIP in solar exposed fa\ue7ade, the adoption of ventilated air layer could dramatically reduce the severity of the VIP operating conditions. Alternatively, light finishing colour are warmly encouraged to mitigate the surface temperature.• The protection of VIP with thin traditional insulation layer is always encouraged.• The application of VIP behind heater determines high value of surface temperature field which could potentially lead to a fast degradation of the panel. A possible solution to mitigate the severity of the boundary conditions could be the coupling of VIP with a radiant barrier, or the protection of VIP with thin insulation layer when it is possible.• In roof application, light colour (cool roof), performant water proof membrane, ventilated airspace and gravel covering layer (flat roof) represent effective solutions to mitigate the severe exposure.• In presence of wall subjected to high driving rain, it is preferable to adopt ventilated fa\ue7ade working as rain-screen to prevent the water absorption.Furthermore, to provide designers, engineers, contractors and builders with guidelines for the applications of vacuum insulation panels (VIPs) and Advanced Porous Materials (APMs) examples are given of methods that may be used to verify the quality and thermal performance of SIMs after installation. A comprehensive account of transport, handling, installation and quality check precures are presented. The main purpose of the descriptions is to promote safe transport, handling and installation. In the case of VIPs the primary issue is that of protecting the panels whereas the main concern for APMs is the safety in handling of the material.During the work of the Annex several questions regarding the long-term performance of SIMs on the building scale have been identified and discussed. Four main challenges were identified:• Knowledge and awareness among designers concerning using SIM• Conservative construction market• Cost versus performance• Long-term performance of SIMsFinally, SIMs for building applications have been developed in the recent decades. Theoretical considerations and first practical tests showed that VIP, especially those with fumed silica core, are expected to fulfil the requirements on durability in building applications for more than 25 years. Both VIPs and APMs have been successfully installed over the past 15 years in buildings. However, real experience from practical applications exceeding 15 years is still lacking, especially when considering third-party monitoring and follow up of demonstrations

    Modelling of long-term thermal behaviour of vacuum insulation panels : (VIP)

    No full text
    On peut distinguer deux familles d'isolants thermiques pour le bâtiment : les isolants dits traditionnels et les super-isolants qui se caractérisent par un pouvoir isolant plus performant qu'une simple lame d'air immobile (25 mW/m/K). Les Panneaux Isolants sous Vide (PIV) font partie de cette seconde catégorie. Un PIV n'est pas un matériau homogène, mais un système constitué d'un matériau de cœur mis sous vide et enfermé dans une enveloppe. La performance thermique du PIV repose sur la structure nano-poreuse du matériau de cœur et du vide primaire maintenu par l'enveloppe qui possède une très faible perméabilité aux gaz. Alors que les isolants traditionnels ont des conductivités thermiques allant de 21 mW/m/K pour la mousse polyuréthane à 50 mW/m/K pour les laines les moins performantes, celle des PIV est d'environ 4 mW/m/K à l'état neuf. Cependant, comme tout isolant, leur performance se dégrade dans le temps. Cette diminution de conductivité thermique est davantage préjudiciable pour les PIV à cause de leur très bonne performance initiale et de leur coût encore élevé. Il convient donc d'étudier l'évolution de leur performance thermique sur l'ensemble de leur durée de vie dans le bâtiment, c'est à dire 50 ans. Pour cela la modélisation a été choisie comme outil car l'expérimentation ne peut satisfaire ces durées d'étude. L'étude du comportement thermique des PIV passe par différents axes de recherches intervenant à différentes échelles.Le premier concerne les mécanismes de transferts des gaz à travers les enveloppes des PIV, aussi appelés complexes barrières. L'enjeu est d'améliorer notre compréhension sur les relations qui existent entre les propriétés morphologiques des complexes barrières et les phénomènes de diffusion de la vapeur d'eau et de l'air sec à travers les différentes couches de matériaux qui constituent ces complexes barrières. Les résultats obtenus ne permettent pas encore de proposer un modèle de diffusion juste à cette échelle, mais mettent en avant certaines tendances et mécanismes physiques qui ouvrent de nouvelles pistes d'exploration.Le deuxième axe de recherche s'intéresse au comportement hygro-thermique à l'échelle des panneaux. Un modèle numérique de PIV a été développé afin de prendre en compte ses propriétés géométriques, thermiques et hydriques dans le calcul la performance thermique globale du panneau. Le modèle intègre le vieillissement du matériau de cœur par la modification de son isotherme de sorption à la vapeur d'eau. Des PIV fabriqués avec différents types de matériaux de cœur sont étudiés dans différentes conditions constantes en température et humidité. Les résultats des simulations permettent de mieux comprendre l'évolution de la conductivité thermique des PIV, d'analyser leur comportement global et de déterminer les principales caractéristiques qui sont déterminantes pour améliorer leur performance.Enfin, la troisième partie des travaux de recherche est consacrée au développement d'une méthode d'analyse de la performance des PIV en conditions réelles d'installation dans un bâtiment, dans différent climats français et plusieurs applications d'isolation. L'objectif est tout d'abord de déterminer les sollicitations réelles auxquelles sont soumis les PIV mis en œuvre, et ensuite de simuler leur comportement thermique à long terme afin de prédire leur performance moyenne. Les résultats donnent des températures et humidités qui sont très variables selon les climats, les systèmes d'isolation et les saisons de l'année, mais celles-ci restent finalement relativement modérées. La performance thermique moyenne des PIV sur 50 ans dépend très peu des applications, mais plus des climats et encore plus du type de silice qui constitue leur matériau de cœur. Contrairement à ce que laissent supposer les essais à court terme, les silices hydrophobes sont les plus favorables. Selon les applications et les climats, la conductivité thermique moyenne des PIV peut varier entre 4,7 et 7,3 mW/m/K.Two types of thermal insulation materials exist for building application: the conventional insulation and the super-insulation materials which is characterized by an insulating performance higher than that of a simple layer of still air 25 mW/m/K). Vacuum Insulation Panels (VIP) belong to the second category. VIP is not a homogeneous material, but a product consisting of a core material maintained under vacuum by an envelope. The thermal performance of VIP is based on the nanoporous property of the core material and on the vacuum maintained by the envelope which has a very high gas barrier properties. While conventional insulation material has a thermal conductivity values from 21 mW/m/K for polyurethane foams to 50 mW/m/K for the worst wools, that of new VIPs is around 4 mW/m/K. Nevertheless, like every insulation materials, their performance degrades over time. This increase of thermal conductivity is even more detrimental for VIPs because of their very high initial performance and of their high cost. It is therefore important to study their thermal performance evolution over all their service-life in building, over 50 years. In order to manage this, modelling has been chosen, because experiments cannot be realised over such long periods. Studying the thermal performance of VIPs is going through different research topics which take place at different scales.The first one concerns the gas transfer mechanisms through the VIPs’ envelope, also called barrier complexes. The challenge is to improve our understanding of the relationship between the barrier complexes morphological properties and the water vapour and dry air diffusion phenomena through the different layers of materials which compose these barrier complexes. The results do not allow to provide a correct model at this scale, but put forward some trends and physical mechanisms that open up new avenues of exploration.The second research topic is focused on the hygro-thermal behaviour at panels’ scale. A numerical model of VIP has been developed in order to take into account its geometric, thermal and hygric properties in the global thermal performance calculation of the panel. The model integrates the ageing process of the core material by moving its water vapour sorption isotherm. VIPs made with different types of core material has been studied in different constant conditions of temperature and humidity. Simulation results allow to better understand the thermal conductivity evolution of VIPs, to analyse their global behaviour and to determine the main characteristics which are relevant to improve their performance.Then, the third part of the research studies is dedicated to the development of a method which allows to analyse the VIPs’ performance in real conditions of installation in building, in different French climate conditions and several insulation applications. The aim is first to determine the real solicitations imposed on VIP, and then to simulate their long-term thermal performance in order to predict their mean performance. Results show a large dispersion of solicitations submitted to VIPs according to the climate conditions and insulation systems. Temperatures and humidities are highly variable according to the seasons, but finally remain relatively moderate. It is turns out that the mean thermal performance of VIPs over 50 years differs little from applications, but more from climate conditions and even more from the type of silica used for the core material. Contrary to what the short term tests would suggest, hydrophobic silicas are most favourable. The mean thermal conductivity of VIPs can varies between 4.7 and 7.3 mW/m/K

    Modélisation du comportement thermique à long terme des Panneaux Isolants sous Vide (PIV)

    No full text
    Two types of thermal insulation materials exist for building application: the conventional insulation and the super-insulation materials which is characterized by an insulating performance higher than that of a simple layer of still air (25 mW/m/K). Vacuum Insulation Panels (VIP) belong to the second category. VIP is not a homogeneous material, but a product consisting of a core material maintained under vacuum by an envelope. The thermal performance of VIP is based on the nanoporous property of the core material and on the vacuum maintained by the envelope which has a very high gas barrier properties. While conventional insulation material has a thermal conductivity values from 21 mW/m/K for polyurethane foams to 50 mW/m/K for the worst wools, that of new VIPs is around 4 mW/m/K. Nevertheless, like every insulation materials, their performance degrades over time. This increase of thermal conductivity is even more detrimental for VIPs because of their very high initial performance and of their high cost. It is therefore important to study their thermal performance evolution over all their service-life in building, over 50 years. In order to manage this, modelling has been chosen, because experiments cannot be realised over such long periods. Studying the thermal performance of VIPs is going through different research topics which take place at different scales.The first one concerns the gas transfer mechanisms through the VIPs’ envelope, also called barrier complexes. The challenge is to improve our understanding of the relationship between the barrier complexes morphological properties and the water vapour and dry air diffusion phenomena through the different layers of materials which compose these barrier complexes. The results do not allow to provide a correct model at this scale, but put forward some trends and physical mechanisms that open up new avenues of exploration.The second research topic is focused on the hygro-thermal behaviour at panels’ scale. A numerical model of VIP has been developed in order to take into account its geometric, thermal and hygric properties in the global thermal performance calculation of the panel. The model integrates the ageing process of the core material by moving its water vapour sorption isotherm. VIPs made with different types of core material has been studied in different constant conditions of temperature and humidity. Simulation results allow to better understand the thermal conductivity evolution of VIPs, to analyse their global behaviour and to determine the main characteristics which are relevant to improve their performance.Then, the third part of the research studies is dedicated to the development of a method which allows to analyse the VIPs’ performance in real conditions of installation in building, in different French climate conditions and several insulation applications. The aim is first to determine the real solicitations imposed on VIP, and then to simulate their long-term thermal performance in order to predict their mean performance. Results show a large dispersion of solicitations submitted to VIPs according to the climate conditions and insulation systems. Temperatures and humidities are highly variable according to the seasons, but finally remain relatively moderate. It is turns out that the mean thermal performance of VIPs over 50 years differs little from applications, but more from climate conditions and even more from the type of silica used for the core material. Contrary to what the short term tests would suggest, hydrophobic silicas are most favourable. The mean thermal conductivity of VIPs can varies between 4.7 and 7.3 mW/m/K depending on the applications and the climates.On peut distinguer deux familles d'isolants thermiques pour le bâtiment : les isolants dits traditionnels et les super-isolants qui se caractérisent par un pouvoir isolant plus performant qu'une simple lame d'air immobile (25 mW/m/K). Les Panneaux Isolants sous Vide (PIV) font partie de cette seconde catégorie. Un PIV n'est pas un matériau homogène, mais un système constitué d'un matériau de cœur mis sous vide et enfermé dans une enveloppe. La performance thermique du PIV repose sur la structure nano-poreuse du matériau de cœur et du vide primaire maintenu par l'enveloppe qui possède une très faible perméabilité aux gaz. Alors que les isolants traditionnels ont des conductivités thermiques allant de 21 mW/m/K pour la mousse polyuréthane à 50 mW/m/K pour les laines les moins performantes, celle des PIV est d'environ 4 mW/m/K à l'état neuf. Cependant, comme tout isolant, leur performance se dégrade dans le temps. Cette augmentation de conductivité thermique est davantage préjudiciable pour les PIV à cause de leur très bonne performance initiale et de leur coût encore élevé. Il convient donc d'étudier l'évolution de leur performance thermique sur l'ensemble de leur durée de vie dans le bâtiment, c'est-à-dire 50 ans. Pour cela, la modélisation a été choisie comme outil, car l'expérimentation ne peut satisfaire ces durées d'étude. L'étude du comportement thermique des PIV passe par différents axes de recherches intervenant à différentes échelles.Le premier concerne les mécanismes de transferts des gaz à travers les enveloppes des PIV, aussi appelés complexes barrières. L'enjeu est d'améliorer notre compréhension sur les relations qui existent entre les propriétés morphologiques des complexes barrières et les phénomènes de diffusion de la vapeur d'eau et de l'air sec à travers les différentes couches de matériaux qui constituent ces complexes barrières. Les résultats obtenus ne permettent pas encore de proposer un modèle de diffusion juste à cette échelle, mais mettent en avant certaines tendances et mécanismes physiques qui ouvrent de nouvelles pistes d'exploration.Le deuxième axe de recherche s'intéresse au comportement hygrothermique à l'échelle des panneaux. Un modèle numérique de PIV a été développé afin de prendre en compte ses propriétés géométriques, thermiques et hygriques dans le calcul de la performance thermique globale du panneau. Le modèle intègre le vieillissement du matériau de cœur par la modification de son isotherme de sorption à la vapeur d'eau. Des PIV fabriqués avec différents types de matériaux de cœur sont étudiés dans différentes conditions constantes en température et humidité. Les résultats des simulations permettent de mieux comprendre l'évolution de la conductivité thermique des PIV, d'analyser leur comportement global et de déterminer les principales caractéristiques qui sont déterminantes pour améliorer leur performance.Enfin, la troisième partie des travaux de recherche est consacrée au développement d'une méthode d'analyse de la performance des PIV en conditions réelles d'installation dans un bâtiment, dans différents climats français et plusieurs applications d'isolation. L'objectif est tout d'abord de déterminer les sollicitations réelles auxquelles sont soumis les PIV mis en œuvre, et ensuite de simuler leur comportement thermique à long terme afin de prédire leur performance moyenne. Les résultats donnent des températures et humidités qui sont très variables selon les climats, les systèmes d'isolation et les saisons de l'année, mais celles-ci restent finalement relativement modérées. La performance thermique moyenne des PIV sur 50 ans dépend très peu des applications, mais plus des climats et encore plus du type de silice qui constitue leur matériau de cœur. Contrairement à ce que laissent supposer les essais à court terme, les silices hydrophobes sont les plus favorables. Selon les applications et les climats, la conductivité thermique moyenne des PIV peut varier entre 4,7 et 7,3 mW/m/K

    Système de mesure de la tension Drain-Source à l'état passant: application aux modules SiC forte tension

    No full text
    National audienceCet article traite de la mesure en fonctionnementdes paramètres électriques sensibles à la dégradation des semiconducteursde puissance menant à une approche de surveillancede l’état de santé du module de puissance. La résistance à l’étatpassant RDSON est un indicateur de vieillissement clé des MOSFETsen carbure de silicium. Elle peut fournir des informations sur ladégradation de la puce et du boîtier afin de rendre un convertisseurde puissance plus fiable. Cette résistance à l’état passant peutêtre déterminée en utilisant à la fois le courant à l’état passant etla tension du semi-conducteur de puissance. Cet article proposeun circuit de mesure de tension à l’état passant pour les moduleshaute puissance (jusqu’à 3.3 kV, 500A). Le circuit proposé estvalidé lors d’un test double pulse pour différentes températuresde semelle du module et comparé aux données obtenues avec untraceur de courbe Keysight B1505

    Système de mesure de la tension Drain-Source à l'état passant: application aux modules SiC forte tension

    No full text
    National audienceCet article traite de la mesure en fonctionnementdes paramètres électriques sensibles à la dégradation des semiconducteursde puissance menant à une approche de surveillancede l’état de santé du module de puissance. La résistance à l’étatpassant RDSON est un indicateur de vieillissement clé des MOSFETsen carbure de silicium. Elle peut fournir des informations sur ladégradation de la puce et du boîtier afin de rendre un convertisseurde puissance plus fiable. Cette résistance à l’état passant peutêtre déterminée en utilisant à la fois le courant à l’état passant etla tension du semi-conducteur de puissance. Cet article proposeun circuit de mesure de tension à l’état passant pour les moduleshaute puissance (jusqu’à 3.3 kV, 500A). Le circuit proposé estvalidé lors d’un test double pulse pour différentes températuresde semelle du module et comparé aux données obtenues avec untraceur de courbe Keysight B1505

    Active Clamp Circuit for Online ON-State Voltage Measurement of High Voltage SiC MOSFETs Power Module

    No full text
    International audienceThis paper deals with online measurement of degradation sensitive electrical parameters leading to a healthmonitoring approach for power module. The on-state resistance RDSON is a key aging indicator of silicon carbideMOSFETs. It can provide information on both chip and packaging degradation allowing more reliable powerelectronic converter. This on-state resistance can be determined using both the on-state current and voltage of thepower semiconductor. This paper focuses on an on-state voltage measurement circuit for high power modules (upto 3.3 kV, 500A SiC module). A power module switching oscillation model is used to design and fine tune theproposed solution. Finally, the proposed circuit is successfully tested on a double pulse test for various modulebase plate temperatures and compared to data obtained with a static curve tracer Keysight B1505

    Active Clamp Circuit for Online ON-State Voltage Measurement of High Voltage SiC MOSFETs Power Module

    No full text
    International audienceThis paper deals with online measurement of degradation sensitive electrical parameters leading to a healthmonitoring approach for power module. The on-state resistance RDSON is a key aging indicator of silicon carbideMOSFETs. It can provide information on both chip and packaging degradation allowing more reliable powerelectronic converter. This on-state resistance can be determined using both the on-state current and voltage of thepower semiconductor. This paper focuses on an on-state voltage measurement circuit for high power modules (upto 3.3 kV, 500A SiC module). A power module switching oscillation model is used to design and fine tune theproposed solution. Finally, the proposed circuit is successfully tested on a double pulse test for various modulebase plate temperatures and compared to data obtained with a static curve tracer Keysight B1505
    corecore