36 research outputs found

    Ribosome-DnaK interactions in relation to protein folding

    Get PDF
    Bacterial ribosomes or their 50S subunit can refold many unfolded proteins. The folding activity resides in domain V of 23S RNA of the 50S subunit. Here we show that ribosomes can also refold a denatured chaperone, DnaK, in vitro, and the activity may apply in the folding of nascent DnaK polypeptides in vivo. The chaperone was unusual as the native protein associated with the 50S subunit stably with a 1:1 stoichiometry in vitro. The binding site of the native protein appears to be different from the domain V of 23S RNA, the region with which denatured proteins interact. The DnaK binding influenced the protein folding activity of domain V modestly. Conversely, denatured protein binding to domain V led to dissociation of the native chaperone from the 50S subunit. DnaK thus appears to depend on ribosomes for its own folding, and upon folding, can rebind to ribosome to modulate its general protein folding activity

    Role of the ribosome in protein folding

    Get PDF
    In all organisms, the ribosome synthesizes and folds full length polypeptide chains into active three-dimensional conformations. The nascent protein goes through two major interactions, first with the ribosome which synthesizes the polypeptide chain and holds it for a considerable length of time, and then with the chaperones. Some of the chaperones are found in solution as well as associated to the ribosome. A number of in vitro and in vivo experiments revealed that the nascent protein folds through specific interactions of some amino acids with the nucleotides in the peptidyl transferase center (PTC) in the large ribosomal subunit. The mechanism of this folding differs from self-folding. In this article, we highlight the folding of nascent proteins on the ribosome and the influence of chaperones etc. on protein folding

    An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards

    Get PDF
    To bring to fruition the capability of nature-based solutions (NBS) in mitigating hydro-meteorological risks (HMRs) and facilitate their widespread uptake require a consolidated knowledge-base related to their monitoring methods, efficiency, functioning and the ecosystem services they provide. We attempt to fill this knowledge gap by reviewing and compiling the existing scientific literature on methods, including ground-based measurements (e.g. gauging stations, wireless sensor network) and remote sensing observations (e.g. from topographic LiDAR, multispectral and radar sensors) that have been used and/or can be relevant to monitor the performance of NBS against five HMRs: floods, droughts, heatwaves, landslides, and storm surges and coastal erosion. These can allow the mapping of the risks and impacts of the specific hydro-meteorological events. We found that the selection and application of monitoring methods mostly rely on the particular NBS being monitored, resource availability (e.g. time, budget, space) and type of HMRs. No standalone method currently exists that can allow monitoring the performance of NBS in its broadest view. However, equipments, tools and technologies developed for other purposes, such as for ground-based measurements and atmospheric observations, can be applied to accurately monitor the performance of NBS to mitigate HMRs. We also focused on the capabilities of passive and active remote sensing, pointing out their associated opportunities and difficulties for NBS monitoring application. We conclude that the advancement in airborne and satellite-based remote sensing technology has signified a leap in the systematic monitoring of NBS performance, as well as provided a robust way for the spatial and temporal comparison of NBS intervention versus its absence. This improved performance measurement can support the evaluation of existing uncertainty and scepticism in selecting NBS over the artificially built concrete structures or grey approaches by addressing the questions of performance precariousness. Remote sensing technical developments, however, take time to shift toward a state of operational readiness for monitoring the progress of NBS in place (e.g. green NBS growth rate, their changes and effectiveness through time). More research is required to develop a holistic approach, which could routinely and continually monitor the performance of NBS over a large scale of intervention. This performance evaluation could increase the ecological and socio-economic benefits of NBS, and also create high levels of their acceptance and confidence by overcoming potential scepticism of NBS implementations

    Nature-based solutions efficiency evaluation against natural hazards: modelling methods, advantages and limitations

    Get PDF
    Nature-based solutions (NBS) for hydro-meteorological risks (HMRs) reduction and management are becoming increasingly popular, but challenges such as the lack of well-recognised standard methodologies to evaluate their performance and upscale their implementation remain. We systematically evaluate the current state-of-the art on the models and tools that are utilised for the optimum allocation, design and efficiency evaluation of NBS for five HMRs (flooding, droughts, heatwaves, landslides, and storm surges and coastal erosion). We found that methods to assess the complex issue of NBS efficiency and cost-benefits analysis are still in the development stage and they have only been implemented through the methodologies developed for other purposes such as fluid dynamics models in micro and catchment scale contexts. Of the reviewed numerical models and tools MIKE-SHE, SWMM (for floods), ParFlow-TREES, ACRU, SIMGRO (for droughts), WRF, ENVI-met (for heatwaves), FUNWAVE-TVD, BROOK90 (for landslides), TELEMAC and ADCIRC (for storm surges) are more flexible to evaluate the performance and effectiveness of specific NBS such as wetlands, ponds, trees, parks, grass, green roof/walls, tree roots, vegetations, coral reefs, mangroves, sea grasses, oyster reefs, sea salt marshes, sandy beaches and dunes. We conclude that the models and tools that are capable of assessing the multiple benefits, particularly the performance and cost-effectiveness of NBS for HMR reduction and management are not readily available. Thus, our synthesis of modelling methods can facilitate their selection that can maximise opportunities and refute the current political hesitation of NBS deployment compared with grey solutions for HMR management but also for the provision of a wide range of social and economic co-benefits. However, there is still a need for bespoke modelling tools that can holistically assess the various components of NBS from an HMR reduction and management perspective. Such tools can facilitate impact assessment modelling under different NBS scenarios to build a solid evidence base for upscaling and replicating the implementation of NBS

    Towards an operationalisation of nature-based solutions for natural hazards

    Get PDF
    Nature-based solutions (NBS) are being promoted as adaptive measures against predicted increasing hydrometeorological hazards (HMHs), such as heatwaves and floods which have already caused significant loss of life and economic damage across the globe. However, the underpinning factors such as policy framework, end-users' interests and participation for NBS design and operationalisation are yet to be established. We discuss the operationalisation and implementation processes of NBS by means of a novel concept of Open-Air Laboratories (OAL) for its wider acceptance. The design and implementation of environmentally, economically, technically and socio-culturally sustainable NBS require inter- and transdisciplinary approaches which could be achieved by fostering co-creation processes by engaging stakeholders across various sectors and levels, inspiring more effective use of skills, diverse knowledge, manpower and resources, and connecting and harmonising the adaptation aims. The OAL serves as a benchmark for NBS upscaling, replication and exploitation in policy-making process through monitoring by field measurement, evaluation by key performance indicators and building solid evidence on their short- and long-term multiple benefits in different climatic, environmental and socio-economic conditions, thereby alleviating the challenges of political resistance, financial barriers and lack of knowledge. We conclude that holistic management of HMHs by effective use of NBS can be achieved with standard compliant data for replicating and monitoring NBS in OALs, knowledge about policy silos and interaction between research communities and end-users. Further research is needed for multi-risk analysis of HMHs and inclusion of NBS into policy frameworks, adaptable at local, regional and national scales leading to modification in the prevalent guidelines related to HMHs. The findings of this work can be used for developing synergies between current policy frameworks, scientific research and practical implementation of NBS in Europe and beyond for its wider acceptance

    Daily angina documentation versus subsequent recall: development of a symptom smartphone app

    Get PDF
    Aims: The traditional approach to documenting angina outcomes in clinical trials is to ask the patient to recall their symptoms at the end of a month. With the ubiquitous availability of smartphones and tablets, daily contemporaneous documentation might be possible. Methods and results: The ORBITA-2 symptom smartphone app was developed with a user-centred iterative design and testing cycle involving a focus group of previous ORBITA participants. The feasibility and acceptability were assessed in an internal pilot of participants in the ongoing ORBITA-2 trial. Seven days of app entries by ORBITA-2 participants were compared with subsequent participant recall at the end of the 7-day period. The design focus group tested a prototype app. They reported that the final version captured their symptoms and was easy to use. In the completion assessment group, 141 of 142 (99%) completed the app in full and 47 of 141 (33%) without reminders. In the recall assessment group, 29 of 29 (100%) participants said they could recall the previous day’s symptoms, and 82% of them recalled correctly. For 2 days previously, 88% said they could recall and of those, 87% recalled correctly. The proportion saying they could recall their symptoms fell progressively thereafter: 89, 67, 61, 50%, and at 7 days, 55% (P < 0.001 for trend). The proportion of recalling correctly also fell progressively to 55% at 7 days (P = 0.04 for trend). Conclusion: Episode counts of angina are difficult to recall after a few days. For trials such as ORBITA-2 focusing on angina, daily symptom collection via a smartphone app will increase the validity of the results

    Towards operationalisation of nature-based solutions for natural hazards

    Get PDF
    Nature-based solutions (NBS) are being promoted as adaptive measures against predicted increasing hydrometeorological hazards (HMHs), such as heatwaves and floods which have already caused significant loss of life and economic damage across the globe. However, the underpinning factors such as policy framework, end-users&apos; interests and participation for NBS design and operationalisation are yet to be established. We discuss the operationalisation and implementation processes of NBS by means of a novel concept of Open-Air Laboratories (OAL) for its wider acceptance. The design and implementation of environmentally, economically, technically and socio-culturally sustainable NBS require inter- and transdisciplinary approaches which could be achieved by fostering co-creation processes by engaging stakeholders across various sectors and levels, inspiring more effective use of skills, diverse knowledge, manpower and resources, and connecting and harmonising the adaptation aims. The OAL serves as a benchmark for NBS upscaling, replication and exploitation in policy-making process through monitoring by field measurement, evaluation by key performance indicators and building solid evidence on their short- and long-term multiple benefits in different climatic, environmental and socio-economic conditions, thereby alleviating the challenges of political resistance, financial barriers and lack of knowledge. We conclude that holistic management of HMHs by effective use of NBS can be achieved with standard compliant data for replicating and monitoring NBS in OALs, knowledge about policy silos and interaction between research communities and end-users. Further research is needed for multi-risk analysis of HMHs and inclusion of NBS into policy frameworks, adaptable at local, regional and national scales leading to modification in the prevalent guidelines related to HMHs. The findings of this work can be used for developing synergies between current policy frameworks, scientific research and practical implementation of NBS in Europe and beyond for its wider acceptance

    Investigating the Performance of Green Roof for Effective Runoff Reduction Corresponding to Different Weather Patterns: A Case Study in Dublin, Ireland

    No full text
    This article aims to analyse the performance of green roof in runoff reduction. A case study has been conducted through a deployed green roof at the custom house quay building in Dublin, Ireland. Modular green roofs have been deployed which have IoT scales associated to it for measuring the effective reduction in runoff. Hydro-meteorological variables such as rainfall, temperature, relative humidity and wind speed values were corresponded to the amount of runoff reduction by means of a regression-based relationship. Comparison of the observed runoff reduction from a modular green roof and that estimated based on the developed regression relationship yielded a R2 value of 0.874. Through this research, a pattern was identified which established that longer records and better weather variables data have the potential to improve the performance of the regression model in predicting the amount of runoff reduction corresponding to different rainfall and weather patterns. In general, performance of green roof was found to be highly positively correlated to the amount of rainfall received; however, low correlation between rainfall and the percentage of runoff reduction indicate that saturated soil in green roofs considerably deteriorates the performance in runoff reduction. Overall, this study can help in identification of locations where installation of green roofs can help mitigate floods at a city scale
    corecore