661 research outputs found

    The crustal structure of the Anatolian Plate from receiver functions and implications for the uplift of the Central and Eastern Anatolian plateaus

    Get PDF
    Understanding the crustal structure of the Anatolian Plate has important implications for its formation and evolution, including the extent to which its high elevation is maintained isostatically. However, the numerous teleseismic receiver function studies from which Anatolian Moho depths have been obtained return results that differ by ≀21 km at some seismograph stations. To address this issue, we determine Moho depth and bulk crustal VP/VS ratio (Îș) at 582 broadband seismograph stations, including ∌100 for which H-Îș results have not been reported previously. We use a modified H-Îș stacking method in which a final solution is selected from a suite of up to 1000 repeat H-Îș measurements, each calculated using randomly-selected receiver functions and H-Îș input parameters. Ten quality control criteria that variously assess the final numerical result, the receiver function data set, and the extent to which the results are clustered tightly, are used to determine station quality. By refining Moho depth constraints, including identifying 182 stations, analysed previously, where H-Îș stacking yields unreliable results (particularly in Eastern Anatolia and the rapidly-uplifting Taurides), our new crustal model (ANATOLIA-HK21) provides fresh insight into Anatolian crustal structure and topography. Changes in Moho depth within the Anatolian Plate occur on a shorter length-scale than has sometimes previously been assumed. For example, crustal thickness decreases abruptly from >40 km in the northern Kirsehir block to <32 km beneath the Central Anatolian Volcanic Province and Tuz Golu basin. Moho depth increases from 30-35 km on the Arabian Plate to 35-40 km across the East Anatolian Fault into Anatolia, in support of structural geological observations that Arabia-Anatolia crustal shortening was accommodated primarily on the Anatolian, not Arabian, Plate. However, there are no consistent changes in Moho depth across the North Anatolian Fault, whose development along the Intra-Pontide and Ä°zmir-Ankara-Erzincan suture zones was more likely the result of contrasts in mantle lithospheric, not crustal, structure. While the crust thins from ∌45 km below the uplifted Eastern Anatolian Plateau to ∌25 km below lower-lying western Anatolia, Moho depth is generally correlated poorly with elevation. Residual topography calculations confirm the requirement for a mantle contribution to Anatolian Plateau uplift, with localised asthenospheric upwellings in response to slab break-off and/or lithospheric dripping/delamination example candidate driving mechanisms

    Upper mantle deformation signatures of craton–orogen interaction in the Carpathian–Pannonian region from SKS anisotropy analysis

    Get PDF
    Since the Mesozoic, central and eastern European tectonics have been dominated by the closure of the Tethyan Ocean as the African and European plates collided. In the Miocene, the edge of the East European Craton and Moesian Platform were reworked in collision during the Carpathian orogeny and lithospheric extension formed the Pannonian Basin. To investigate the mantle deformation signatures associated with this complex collisional-extensional system, we carry out SKS splitting analysis at 123 broad-band seismic stations in the region. We compare our measurements with estimates of lithospheric thickness and recent seismic tomography models to test for correlation with mantle heterogeneities. Reviewing splitting delay times in light of xenolith measurements of anisotropy yields estimates of anisotropic layer thickness. Fast polarization directions are mostly NW–SE oriented across the seismically slow West Carpathians and Pannonian Basin and are independent of geological boundaries, absolute plate motion direction or an expected palaeo-slab roll-back path. Instead, they are systematically orthogonal to maximum stress directions, implying that the indenting Adria Plate, the leading deformational force in Central Europe, reset the upper-mantle mineral fabric in the past 5 Ma beneath the Pannonian Basin, overprinting the anisotropic signature of earlier tectonic events. Towards the east, fast polarization directions are perpendicular to steep gradients of lithospheric thickness and align along the edges of fast seismic anomalies beneath the Precambrian-aged Moesian Platform in the South Carpathians and the East European Craton, supporting the idea that craton roots exert a strong influence on the surrounding mantle flow. Within the Moesian Platform, SKS measurements become more variable with Fresnel zone arguments indicating a shallow fossil lithospheric source of anisotropy likely caused by older tectonic deformation frozen in the Precambrian. In the Southeast Carpathian corner, in the Vrancea Seismic Zone, a lithospheric fragment that sinks into the mantle is sandwiched between two slow anomalies, but smaller SKS delay times reveal weaker anisotropy occurs mainly to the NW side, consistent with asymmetric upwelling adjacent to a slab, slower mantle velocities and recent volcanism

    Multigenetic origin of the X-discontinuity below continents: insights from African receiver functions

    Get PDF
    Constraints on chemical heterogeneities in the upper mantle may be derived from studying the seismically observable impedance contrasts that they produce. Away from subduction zones, several causal mechanisms are possible to explain the intermittently observed X-discontinuity (X) at 230–350 km depth: the coesite-stishovite phase transition, the enstatite to clinoenstatite phase transition, and/or carbonated silicate melting, all requiring a local enrichment of basalt. Africa hosts a broad range of terranes, from Precambrian cores to Cenozoic hotspots with or without lowermost mantle origins. With the absence of subduction below the margins of the African plate for >0.5 Ga, Africa presents an ideal study locale to explore the origins of the X. Traditional receiver function (RF) approaches used to map seismic discontinuities, such as common conversion-point stacking, ignore slowness information crucial for discriminating converted upper mantle phases from surface multiples. By manually assessing depth and slowness stacks for 1° radius overlapping bins, normalized vote mapping of RF stacks is used to robustly assess the spatial distribution of converted upper mantle phases. The X is mapped beneath Africa at 233–340 km depth, revealing patches of heterogeneity proximal to mantle upwellings in Afar, Canaries, Cape Verde, East Africa, Hoggar, and RĂ©union with further observations beneath Cameroon, Madagascar, and Morocco. There is a lack of an X beneath southern Africa and strikingly, the magmatic eastern rift branch of the southern East African Rift. With no relationships existing between depth and amplitudes of observed X and estimated mantle temperatures, multiple causal mechanisms are required across a range of continental geodynamic settings

    Seismic imaging of the Alaska Subduction Zone: implications for slab geometry and volcanism

    Get PDF
    Alaska has been a site of subduction and terrane accretion since the mid‐Jurassic. The area features abundant seismicity, active volcanism, rapid uplift, and broad intraplate deformation, all associated with subduction of the Pacific plate beneath North America. The juxtaposition of a slab edge with subducted, overthickened crust of the Yakutat terrane beneath central Alaska is associated with many enigmatic volcanic features. The causes of the Denali Volcanic Gap, a 400‐km‐long zone of volcanic quiescence west of the slab edge, are debated. Furthermore, the Wrangell Volcanic Field, southeast of the volcanic gap, also has an unexplained relationship with subduction. To address these issues, we present a joint ambient noise, earthquake‐based surface wave, and P‐S receiver function tomography model of Alaska, along with a teleseismic S wave velocity model. We compare the crust and mantle structure between the volcanic and nonvolcanic regions, across the eastern edge of the slab and between models. Low crustal velocities correspond to sedimentary basins, and several terrane boundaries are marked by changes in Moho depth. The continental lithosphere directly beneath the Denali Volcanic Gap is thicker than in the adjacent volcanic region. We suggest that shallow subduction here has cooled the mantle wedge, allowing the formation of thick lithosphere by the prevention of hot asthenosphere from reaching depths where it can interact with fluids released from the slab and promote volcanism. There is no evidence for subducted material east of the edge of the Yakutat terrane, implying the Wrangell Volcanic Field formed directly above a slab edge

    The Hudson Bay Lithospheric Experiment (HuBLE) : Insights into Precambrian Plate Tectonics and the Development of Mantle Keels

    Get PDF
    The UK component of HuBLE was supported by Natural Environment Research Council (NERC) grant NE/F007337/1, with financial and logistical support from the Geological Survey of Canada, Canada–Nunavut Geoscience Office, SEIS-UK (the seismic node of NERC), and First Nations communities of Nunavut. J. Beauchesne and J. Kendall provided invaluable assistance in the field. Discussions with M. St-Onge, T. Skulski, D. Corrigan and M. Sanborne-Barrie were helpful for interpretation of the data. D. Eaton and F. A. Darbyshire acknowledge the Natural Sciences and Engineering Research Council. Four stations on the Belcher Islands and northern Quebec were installed by the University of Western Ontario and funded through a grant to D. Eaton (UWO Academic Development Fund). I. Bastow is funded by the Leverhulme Trust. This is Natural Resources Canada Contribution 20130084 to its Geomapping for Energy and Minerals Program. This work has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 240473 ‘CoMITAC’.Peer reviewedPublisher PD

    Seismic tomographic imaging of the Eastern Mediterranean Mantle: Implications for terminal-stage subduction, the uplift of Anatolia, and the development of the North Anatolian Fault

    Get PDF
    The Eastern Mediterranean captures the eastwest transition from active subduction of Earth'soldest oceanic lithosphere to continental collision, making it an ideal location to study terminalstagesubduction. Asthenospheric or subductionrelated processes are the main candidates for the region's ∌2kmuplift and Miocene volcanism; however, their relative importance is debated. To address these issues, wepresent new P and S wave relative arrivaltime tomographic models that reveal fast anomalies associatedwith an intact Aegean slab in the west, progressing to a fragmented, partially continental, Cyprean slabbelow central Anatolia. We resolve a gap between the Aegean and Cyprean slabs, and a horizontal tear in theCyprean slab below the Central Anatolian Volcanic Province. Below eastern Anatolia, the completelydetached “Bitlis” slab is characterized by fast wave speeds at ∌500 km depth. Assuming slab sinkingrates mirror ArabiaAnatolia convergence rates, the Bitlis slab's location indicates an Oligocene (∌26 Ma)breakoff. Results further reveal a strong velocity contrast across the North Anatolian Fault likelyrepresenting a 40–60 km decrease in lithospheric thickness from the Precambrian lithosphere north of thefault to a thinned Anatolian lithosphere in the south. Slow uppermostmantle wave speeds below activevolcanoes in eastern Anatolia, and ratios of P to S wave relative traveltimes, indicate a thin lithosphere andmelt contributions. Positive central and eastern Anatolian residual topography requires additional supportfrom hot/buoyant asthenosphere to maintain the 1–2 km elevation in addition to an almost absentlithospheric mantle. Smallscale fast velocity structures in the shallow mantle above the Bitlis slab maytherefore be drips of Anatolian lithospheric mantle

    Subduction beneath Laurentia modified the eastern North American cratonic edge : Evidence from P wave and S wave tomography

    Get PDF
    Funding Information: NERC Doctoral Training Partnership: Science and Solutions for a Changing Planet and Leverhulme Trust Acknowledgments A.B. is funded by the NERC Doctoral Training Partnership: Science and Solutions for a Changing Planet. I.B. is funded by the Leverhulme Trust. F.D. acknowledges funding from NSERC through their Discovery grants and Canada Research Chairs program. We thank J. VanDecar for use of his tomographic inversion and MCCC codes. SAC [Helffrich et al., 2013] and GMT [Wessel and Smith, 1995] software were also used to process seismic data obtained from the IRIS DMC and from the Canadian National Data Centre (Natural Resources Canada). A digital supplement is also available to download containing models and the processed relative arrival‐time data set, additional information is available from A.B. (email: [email protected]). Discussing the implications of our tomographic results with S. Goes and A. Hynes provided great motivation for this manuscript. Two anonymous reviewers helped clarify our interpretations.Peer reviewedPublisher PD

    Seismicity and crustal structure of the southern main Ethiopian rift: new evidence from Lake Abaya

    Get PDF
    The Main Ethiopian Rift (MER) has developed during the 18 Ma-Recent separation of the Nubian and Somalian plates. Extension in its central and northern sectors is associated with seismic activity and active magma intrusion, primarily within the rift, where shallow (urn:x-wiley:15252027:media:ggge22586:ggge22586-math-00015 km) seismicity along magmatic centers is commonly caused by fluid flow through open fractures in hydrothermal systems. However, the extent to which similar magmatic rifting persists into the southern MER is unknown. Using data from a temporary network of five seismograph stations, we analyze patterns of seismicity and crustal structure in the Abaya region of the southern MER. Magnitudes range from 0.9 to 4.0; earthquake depths are 0–30 km. urn:x-wiley:15252027:media:ggge22586:ggge22586-math-0002 ratios of urn:x-wiley:15252027:media:ggge22586:ggge22586-math-00031.69, estimated from Wadati diagram analysis, corroborate bulk-crustal urn:x-wiley:15252027:media:ggge22586:ggge22586-math-0004 ratios determined via teleseismic P-to-S receiver function H-urn:x-wiley:15252027:media:ggge22586:ggge22586-math-0005 stacking and reveal a relative lack of mafic intrusion compared to the MER rift sectors to the north. There is a clear association of seismicity with the western border fault system of the MER everywhere in our study area, but earthquake depths are shallow near Duguna volcano, implying a shallowed geothermal gradient associated with rift valley silicic magmatism. This part of the MER is thus interpreted best as a young magmatic system that locally impacts the geothermal gradient but that has not yet significantly modified continental crustal composition via rift-axial magmatic rifting

    A Reappraisal of the H-Îș Stacking Technique : Implications for Global Crustal Structure

    Get PDF
    We thank two anonymous reviewers and editor Michael Ritzwoller for insightful comments which have improved this manuscript. We also thank H. Meek for hard work during the early stages of this project and S. Pilidou, I. Dimitriadis, P. Iosif and their colleagues at the Geological Survey Department of Cyprus for their help establishing the TROODOS network (Bastow et al., 2017). V. Lane and D. Daly (both of SEIS-UK), A. Boyce, M. Liddell and R. Kounoudis were all excellent field assistants in Cyprus. SAC (Helffrich et al., 2013) and GMT (Wessel and Smith, 1991) software were used to process and image seismic data, which were sourced from IRIS DMC and ORFEUS. C.S. Ogden is funded by the Natural Environment Research Council (NERC) Doctoral Training Partnership: Science and Solutions for a Changing Planet, Grant Number NE/L002515/1. S. Rondenay’s contribution to this work was supported by Career Integration Grant 321871 - GLImER from the FP7 Marie Curie Actions of the European Commission, and by the Research Council of Norway FRINATEK programme through SwaMMIS project 231354.Peer reviewedPostprin
    • 

    corecore