1,369 research outputs found
On periodic solutions of 2-periodic Lyness difference equations
We study the existence of periodic solutions of the non--autonomous periodic
Lyness' recurrence u_{n+2}=(a_n+u_{n+1})/u_n, where {a_n} is a cycle with
positive values a,b and with positive initial conditions. It is known that for
a=b=1 all the sequences generated by this recurrence are 5-periodic. We prove
that for each pair (a,b) different from (1,1) there are infinitely many initial
conditions giving rise to periodic sequences, and that the family of
recurrences have almost all the even periods. If a is not equal to b, then any
odd period, except 1, appears.Comment: 27 pages; 1 figur
A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion
Users may strive to formulate an adequate textual query for their information
need. Search engines assist the users by presenting query suggestions. To
preserve the original search intent, suggestions should be context-aware and
account for the previous queries issued by the user. Achieving context
awareness is challenging due to data sparsity. We present a probabilistic
suggestion model that is able to account for sequences of previous queries of
arbitrary lengths. Our novel hierarchical recurrent encoder-decoder
architecture allows the model to be sensitive to the order of queries in the
context while avoiding data sparsity. Additionally, our model can suggest for
rare, or long-tail, queries. The produced suggestions are synthetic and are
sampled one word at a time, using computationally cheap decoding techniques.
This is in contrast to current synthetic suggestion models relying upon machine
learning pipelines and hand-engineered feature sets. Results show that it
outperforms existing context-aware approaches in a next query prediction
setting. In addition to query suggestion, our model is general enough to be
used in a variety of other applications.Comment: To appear in Conference of Information Knowledge and Management
(CIKM) 201
Polarimetric variations of binary stars. III Periodic polarimetric variations of the Herbig Ae/Be star MWC 1080
We present polarimetric observations of a massive pre-main sequence
short-period binary star of the Herbig Ae/Be type, MWC 1080. The mean
polarization at 7660 A is 1.60% at 81.6 deg, or 0.6% at 139 deg if an estimate
of the interstellar polarization is subtracted. The intrinsic polarization
points to an asymmetric geometry of the circumstellar or circumbinary
environment while the 139 deg intrinsic position angle traces the axis of
symmetry of the system and is perpendicular to the position angle of the
outflow cavity. The polarization and its position angle are clearly variable,
at all wavelengths, and on time scales of hours, days, months, and years.
Stochastic variability is accompanied by periodic variations caused by the
orbital motion of the stars in their dusty environment. These periodic
polarimetric variations are the first phased-locked ones detected for a
pre-main sequence binary. The variations are not simply double-periodic (seen
twice per orbit) but include single-periodic (seen once per orbit) and
higher-order variations. The presence of single-periodic variations could be
due to non equal mass stars, the presence of dust grains, an asymmetric
configuration of the circumstellar or circumbinary material, or the
eccentricity of the orbit. MWC 1080 is an eclipsing binary with primary and
secondary eclipses occurring at phases 0.0 and 0.55. The signatures of the
eclipses are seen in the polarimetric observations.Comment: 30 pages, 8 figures, to be published in the Astronomical Journa
Ring Formation in Magnetically Subcritical Clouds and Multiple Star Formation
We study numerically the ambipolar diffusion-driven evolution of
non-rotating, magnetically subcritical, disk-like molecular clouds, assuming
axisymmetry. Previous similar studies have concentrated on the formation of
single magnetically supercritical cores at the cloud center, which collapse to
form isolated stars. We show that, for a cloud with many Jeans masses and a
relatively flat mass distribution near the center, a magnetically supercritical
ring is produced instead. The supercritical ring contains a mass well above the
Jeans limit. It is expected to break up, through both gravitational and
possibly magnetic interchange instabilities, into a number of supercritical
dense cores, whose dynamic collapse may give rise to a burst of star formation.
Non-axisymmetric calculations are needed to follow in detail the expected ring
fragmentation into multiple cores and the subsequent core evolution.
Implications of our results on multiple star formation in general and the
northwestern cluster of protostars in the Serpens molecular cloud core in
particular are discussed.Comment: 25 pages, 4 figures, to appear in Ap
Fronts and interfaces in bistable extended mappings
We study the interfaces' time evolution in one-dimensional bistable extended
dynamical systems with discrete time. The dynamics is governed by the
competition between a local piece-wise affine bistable mapping and any
couplings given by the convolution with a function of bounded variation. We
prove the existence of travelling wave interfaces, namely fronts, and the
uniqueness of the corresponding selected velocity and shape. This selected
velocity is shown to be the propagating velocity for any interface, to depend
continuously on the couplings and to increase with the symmetry parameter of
the local nonlinearity. We apply the results to several examples including
discrete and continuous couplings, and the planar fronts' dynamics in
multi-dimensional Coupled Map Lattices. We eventually emphasize on the
extension to other kinds of fronts and to a more general class of bistable
extended mappings for which the couplings are allowed to be nonlinear and the
local map to be smooth.Comment: 27 pages, 3 figures, submitted to Nonlinearit
The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A
Thermal emission from cold dust grains in giant molecular clouds can be used
to probe the physical properties, such as density, temperature and emissivity
in star-forming regions. We present the SCUBA-2 shared-risk observations at 450
m and 850 m of the Orion A molecular cloud complex taken at the James
Clerk Maxwell Telescope (JCMT). Previous studies showed that molecular emission
lines can contribute significantly to the measured fluxes in those continuum
bands. We use the HARP CO J=3-2 integrated intensity map for Orion A in
order to evaluate the molecular line contamination and its effects on the
SCUBA-2 maps. With the corrected fluxes, we have obtained a new spectral index
map for the thermal emission of dust in the well-known integral-shaped
filament. Furthermore, we compare a sample of 33 sources, selected over the
Orion A molecular cloud complex for their high CO J=3-2 line
contamination, to 27 previously identified clumps in OMC-4. This allows us to
quantify the effect of line contamination on the ratio of 850 m to 450
m flux densities and how it modifies the deduced spectral index of
emissivity for the dust grains. We also show that at least one
Spitzer-identified protostellar core in OMC-5 has a CO J=3-2
contamination level of 16 %. Furthermore, we find the strongest contamination
level (44 %) towards a young star with disk near OMC-2. This work is part of
the JCMT Gould Belt Legacy Survey.Comment: 13 pages, 6 figures, Accepted for publication in Monthly Notices of
the Royal Astronomical Society (MNRAS
Existence and Stability of Steady Fronts in Bistable CML
We prove the existence and we study the stability of the kink-like fixed
points in a simple Coupled Map Lattice for which the local dynamics has two
stable fixed points. The condition for the existence allows us to define a
critical value of the coupling parameter where a (multi) generalized
saddle-node bifurcation occurs and destroys these solutions. An extension of
the results to other CML's in the same class is also displayed. Finally, we
emphasize the property of spatial chaos for small coupling.Comment: 18 pages, uuencoded PostScript file, J. Stat. Phys. (In press
Metastability in Interacting Nonlinear Stochastic Differential Equations II: Large-N Behaviour
We consider the dynamics of a periodic chain of N coupled overdamped
particles under the influence of noise, in the limit of large N. Each particle
is subjected to a bistable local potential, to a linear coupling with its
nearest neighbours, and to an independent source of white noise. For strong
coupling (of the order N^2), the system synchronises, in the sense that all
oscillators assume almost the same position in their respective local potential
most of the time. In a previous paper, we showed that the transition from
strong to weak coupling involves a sequence of symmetry-breaking bifurcations
of the system's stationary configurations, and analysed in particular the
behaviour for coupling intensities slightly below the synchronisation
threshold, for arbitrary N. Here we describe the behaviour for any positive
coupling intensity \gamma of order N^2, provided the particle number N is
sufficiently large (as a function of \gamma/N^2). In particular, we determine
the transition time between synchronised states, as well as the shape of the
"critical droplet", to leading order in 1/N. Our techniques involve the control
of the exact number of periodic orbits of a near-integrable twist map, allowing
us to give a detailed description of the system's potential landscape, in which
the metastable behaviour is encoded
Extensive collection of femtoliter pad secretion droplets in beetle Leptinotarsa decemlineata allows nanoliter microrheology
Pads of beetles are covered with long, deformable setae, each ending in a
micrometric terminal plate coated with secretory fluid. It was recently shown
that the layer of the pad secretion covering the terminal plates is responsible
for the generation of strong attractive forces. However, less is known about
the fluid itself because it is produced in extremely small quantity. We here
present a first experimental investigation of the rheological properties of the
pad secretion in the Colorado potato beetle {\it Leptinotarsa decemlineata}.
Because the secretion is produced in an extremely small amount at the level of
the terminal plate, we first develop a procedure based on capillary effects to
collect the secretion. We then manage to incorporate micrometric beads,
initially in the form of a dry powder, and record their thermal motion to
determine the mechanical properties of the surrounding medium. We achieve such
a quantitative measurement within the collected volume, much smaller than the
l sample volume usually required for this technique. Surprisingly,
the beetle secretion was found to behave as a purely viscous liquid, of high
viscosity. This suggests that no specific complex fluid behaviour is needed
during beetle locomotion. We build a scenario for the contact formation between
the spatula at the setal tip and a substrate, during the insect walk. We show
that the attachment dynamics of the insect pad computed from the high measured
viscosity is in good agreement with observed insect pace. We finally discuss
the consequences of the secretion viscosity on the insect adhesion
Kinks Dynamics in One-Dimensional Coupled Map Lattices
We examine the problem of the dynamics of interfaces in a one-dimensional
space-time discrete dynamical system. Two different regimes are studied : the
non-propagating and the propagating one. In the first case, after proving the
existence of such solutions, we show how they can be described using Taylor
expansions. The second situation deals with the assumption of a travelling wave
to follow the kink propagation. Then a comparison with the corresponding
continuous model is proposed. We find that these methods are useful in simple
dynamical situations but their application to complex dynamical behaviour is
not yet understood.Comment: 17pages, LaTex,3 fig available on cpt.univ-mrs.fr directory
pub/preprints/94/dynamical-systems/94-P.307
- …