64 research outputs found

    A statistical model for estimation of fish density including correlation in size, space, time and between species from research survey data

    Get PDF
    Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP) statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes zero observations and over-dispersion. The model utilises the fact the correlation between numbers of fish caught increases when the distance in space and time between the fish decreases, and the correlation between size groups in a haul increases when the difference in size decreases. Here the model is extended in two ways. Instead of assuming a natural scale size correlation, the model is further developed to allow for a transformed length scale. Furthermore, in the present application, the spatial- and size-dependent correlation between species was included. For cod (Gadus morhua) and whiting (Merlangius merlangus), a common structured size correlation was fitted, and a separable structure between the time and space-size correlation was found for each species, whereas more complex structures were required to describe the correlation between species (and space-size). The within-species time correlation is strong, whereas the correlations between the species are weaker over time but strong within the year

    A model-based evaluation of Marine Protected Areas: the example of eastern Baltic cod (Gadus morhua callarias L.).

    Get PDF
    The eastern Baltic cod stock collapsed as a consequence of climate-driven adverse hydrographic conditions and overfishing and has remained at historically low levels. Spatio-temporal fishing closures [Marine Protected Areas (MPAs)] have been implemented since 1995, to protect and restore the spawning stock. However, no signs of recovery have been observed yet, either suggesting that MPAs are an inappropriate management measure or pointing towards suboptimal closure design. We used the spatially explicit fishery simulation model ISIS-Fish to evaluate proposed and implemented fishery closures, combining an age-structured population module with a multifleet exploitation module and a management module in a single model environment. The model is parameterized based on (i) the large amount of biological knowledge available for cod and (ii) an analysis of existing spatially disaggregated fishery data. As the population dynamics of eastern Baltic cod depend strongly on the climate-driven hydrographic regime, we considered two production regimes of the stock. MPAs were only effective for stock recovery when they reduced overall fishing effort. The performance of MPAs needs to be evaluated relative to environmental regimes, especially for stocks facing strong environmental variability

    A Review Characterizing 25 Ecosystem Challenges to Be Addressed by an Ecosystem Approach to Fisheries Management in Europe

    Get PDF
    The impacts of fisheries on ocean resources are no longer considered in isolation but should account for broader ecosystem effects. However, ongoing ecosystem-wide changes added to the inherent dynamics of marine ecosystems, create challenges for fisheries and fisheries management by affecting our ability to ensure future fishing opportunities and sustainable use of the seas. By reviewing a corpus of fisheries science literature, we contribute to informing managers and policymakers with considerations of the various threats to fisheries and the marine ecosystems that support them. We identify and describe 25 ecosystem challenges and 7 prominent families of management options to address them. We capture the challenges acting within three broad categories: (i) fishing impacts on the marine environments and future fishing opportunities, (ii) effects of environmental conditions on fish and fishing opportunities, and (iii) effects of context in terms of socioeconomics, fisheries management, and institutional set-up on fisheries. Our review shows that, while most EU fisheries are facing a similar array of challenges, some of them are specific to regions or individual fisheries. This is reflected in selected regional cases taking different perspectives to exemplify the challenges along with fishery-specific cases. These cases include the dramatic situation of the Baltic Sea cod, facing an array of cumulative pressures, the multiple and moving ecosystem interactions that rely on the North Sea forage fish facing climate change, the interaction of fishing and fish stocks in a fluctuating mixed fishery in the Celtic Sea, the bycatch of marine mammals and seabirds and habitat degradation in the Bay of Biscay, and finally the under capacity and lack of fundamental knowledge on some features of the EU Outermost Regions. In addition to these ecoregion specific findings, we discuss the outcomes of our review across the whole of European waters and we conclude by recognizing that there are knowledge gaps regarding the direction of causality, nonlinear responses, and confounding effects. All of the challenges we identify and characterize may guide further data collection and research coordination to improve our fundamental understanding of the system and to monitor real changes within it, both of which are required to inform an Ecosystem Approach to Fisheries Management (EAFM). An European EAFM could build upon an array of management measures currently tailored for fisheries management only, including promoting funding interdisciplinary research and ecosystem monitoring. Such integrative management should reduce uncertainties in environmental, social and economic trends, and lower the risk for disruptive events or ecosystem effects with far-reaching consequences, including a shift toward less productive marine ecosystems.En prens

    Differences in biological traits composition of benthic assemblages between unimpacted habitats

    Get PDF
    There is an implicit requirement under contemporary policy drivers to understand the characteristics of benthic communities under anthropogenically-unimpacted scenarios. We used a trait-based approach on a large dataset from across the European shelf to determine how functional characteristics of unimpacted benthic assemblages vary between different sedimentary habitats. Assemblages in deep, muddy environments unaffected by anthropogenic disturbance show increased proportions of downward conveyors and surface deposit-feeders, while burrowing, diffusive mixing, scavenging and predation traits assume greater numerical proportions in shallower habitats. Deep, coarser sediments are numerically more dominated by sessile, upward conveyors and suspension feeders. In contrast, unimpacted assemblages of coarse sediments in shallower regions are proportionally dominated by the diffusive mixers, burrowers, scavengers and predators. Finally, assemblages of gravelly sediments exhibit a relatively greater numerical dominance of non-bioturbators and asexual reproducers. These findings may be used to form the basis of ranking habitats along a functional sensitivity gradient

    Mesoscale productivity fronts and local fishing opportunities in the European Seas

    Get PDF
    This study evaluates the relationship between both commercial and scientific spatial fisheries data and a new satellite-based estimate of potential fish production (Ocean Productivity available to Fish, OPFish) in the European Seas. To construct OPFish, we used productivity frontal features derived from chlorophyll-a horizontal gradients, which characterize 10%–20% of the global phytoplankton production that effectively fuels higher trophic levels. OPFish is relatively consistent with the spatial distribution of both pelagic and demersal fish landings and catches per unit of effort (LPUEs and CPUEs, respectively). An index of harvest relative to ocean productivity (HP index) is calculated by dividing these LPUEs or CPUEs with OPFish. The HP index reflects the intensity of fishing by gear type with regard to local fish production. Low HP levels indicate lower LPUEs or CPUEs than expected from oceanic production, suggesting over-exploitation, while high HP levels imply more sustainable fishing. HP allows comparing the production-dependent suitability of local fishing intensities. Our results from bottom trawl data highlight that over-exploitation of demersal species from the shelves is twice as high in the Mediterranean Sea than in the North-East Atlantic. The estimate of HP index by dominant pelagic and demersal gears suggests that midwater and bottom otter trawls are associated with the lowest and highest overfishing, respectively. The contrasts of fishing intensity at local scales captured by the HP index suggest that accounting for the local potential fish production can promote fisheries sustainability in the context of ecosystem-based fisheries management as required by international marine policies

    Different bottom trawl fisheries have a differential impact on the status of the North Sea seafloor habitats

    Get PDF
    Fisheries using bottom trawls are the most widespread source of anthropogenic physical disturbance to seafloor habitats. To mitigate such disturbances, the development of fisheries-, conservation-, and ecosystem-based management strategies requires the assessment of the impact of bottom trawling on the state of benthic biota. We explore a quantitative and mechanistic framework to assess trawling impact. Pressure and impact indicators that provide a continuous pressure–response curve are estimated at a spatial resolution of 1 χ 1 min latitude and longitude (~2 km2) using three methods: L1 estimates the proportion of the community with a life span exceeding the time interval between trawling events; L2 estimates the decrease in median longevity in response to trawling; and population dynamic (PD) estimates the decrease in biomass in response to trawling and the recovery time. Although impact scores are correlated, PD has the best performance over a broad range of trawling intensities. Using the framework in a trawling impact assessment of ten métiers in the North Sea shows that muddy habitats are impacted the most and coarse habitats are impacted the least. Otter trawling for crustaceans has the highest impact, followed by otter trawling for demersal fish and beam trawling for flatfish and flyshooting. Beam trawling for brown shrimps, otter trawling for industrial fish, and dredging for molluscs have the lowest impact. Trawling is highly aggregated in core fishing grounds where the status of the seafloor is low but the catch per unit of effort (CPUE) per unit of impact is high, in contrast to peripheral grounds, where CPUE per unit of impact is low.</p
    corecore