32 research outputs found

    The future of bioethanol

    Get PDF
    Yeasts have been domesticated by mankind before horses. After the mastering of alcoholic fermentation for centuries, yeasts have become the protagonist of one of the most important biotechnological industries worldwide: the production of bioethanol. This chapter will initially present some important challenges to be overcome in this industry, both in first and second generation biofuel production. Then, it will briefly revisit some advances obtained in recent years. Finally, it will present and discuss some opportunities, in the scope of metabolic engineering and synthetic biology, that will likely be present in the future of bioethanol

    Mitigating stress in industrial yeasts

    Get PDF
    The yeast, Saccharomyces cerevisiae, is the premier fungal cell factory exploited in industrial biotechnology. In particular, ethanol production by yeast fermentation represents the world's foremost biotechnological process, with beverage and fuel ethanol contributing significantly to many countries economic and energy sustainability. During industrial fermentation processes, yeast cells are subjected to several physical, chemical and biological stress factors that can detrimentally affect ethanol yields and overall production efficiency. These stresses include ethanol toxicity, osmostress, nutrient starvation, pH and temperature shock, as well as biotic stress due to contaminating microorganisms. Several cell physiological and genetic approaches to mitigate yeast stress during industrial fermentations can be undertaken, and such approaches will be discussed with reference to stress mitigation in yeasts employed in Brazilian bioethanol processes. This article will highlight the importance of furthering our understanding of key aspects of yeast stress physiology and the beneficial impact this can have more generally on enhancing industrial fungal bioprocesses

    Erratum to: Quantitative physiology and elemental composition of Kluyveromyces lactis CBS 2359 during growth on glucose at different specific growth rates

    Get PDF
    In the original publication of the article, the below mentioned errors have appeared. The correct text is provided in this erratum. In the abstract section, the sentence ‘‘This dataset serve’’ should be replaced as ‘‘This dataset serves’’. Also, the reference ‘‘Basso TO, Gomes FS, Lopes ML, et al (2014) Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.Antonie Van Leeuwenhoek105:169–177. doi:10.1007/s10482-013-0063-6’’ should be replaced as ‘‘Basso TO, Dario MG, Tonso A, Stambuk BU, GombertAK(2010)Insufficienturacilsupplyinfullyaerobic chemostat cultures of Saccharomyces cerevisiae leads torespiro-fermentative metabolism anddouble nutrientlimitation. Biotechnol Lett 32:973–977. doi: 10.1007/ s10529-010-0248-2’’. Finally, in the Table 2 footnote, ‘‘according to (Heijnen 1981)’’ should be replaced as ‘‘according to Heijnen (1981)’’.info:eu-repo/semantics/publishedVersio

    Quantitative physiology and elemental composition of Kluyveromyces lactis CBS 2359 during growth on glucose at different specific growth rates

    Get PDF
    The yeast Kluyveromyces lactis has received attention both from academia and industry due to some important features, such as its capacity to grow in lactose-based media, its safe status, its suitability for large-scale cultivation and for heterologous protein synthesis. It has also been considered as a model organism for genomics and metabolic regulation. Despite this, very few studies were carried out hitherto under strictly controlled conditions, such as those found in a chemostat. Here we report a set of quantitative physiological data generated during chemostat cultivations with the K. lactis CBS 2359 strain, obtained under glucose-limiting and fully aerobic conditions. This dataset serve as a basis for the comparison of K. lactis with the model yeast Saccharomyces cerevisiae in terms of their elemental compositions, as well as for future metabolic flux analysis and metabolic modelling studies with K. lactis.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. T.O.B. would like to express his gratitude for funds provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, Brazil).info:eu-repo/semantics/publishedVersio

    Enhancing acetic acid and 5-hydroxymethyl furfural tolerance of C. saccharoperbutylacetonicum through adaptive laboratory evolution

    Get PDF
    Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.procbio.2020.11.013.In this study, adaptive laboratory evolution (ALE) was applied to isolate four strains of Clostridium saccharoperbutylacetonicum able to grow in the presence of hemicellulosic hydrolysate inhibitors unsupported by the parental strain. Among them, isolate RAC-25 presented the best fermentative performance, producing 22.1g/L of ABE and 16.7g/L of butanol. Genome sequencing revealed a deletion in the arabinose transcriptional repressor gene (araR) and a mutation in the anti-sigma factor I that promoted a downregulation of sigI. Gene expression analysis indicated high expression of genes related to H+-pumps (ATP synthases), proline biosynthesis (gamma phosphate reductase) and chaperonins (Grol), suggesting an integrated mechanism that is probably coordinated by the repression of sigI. Therefore, in addition to highlighting the power of ALE for selecting robust strains, our results suggest that sigI and araR may be interesting gene targets for increased tolerance toward inhibitor compounds relevant for lignocellulosic biofuels production.The authors would like to thank the Brazilian Center for Research in Energy and Materials (CNPEM) for providing access to the bioprocess facility of the Brazilian Biorenewables National Laboratory, and CNPq (400803/2013-5), FCT (UID/BIO/04469), BioTecNorte Operation (NORTE-01-0145-FEDER-000004) and Portuguese Biological Data Network” (ref. LISBOA-01-0145-FEDER-022231) for financial support.info:eu-repo/semantics/publishedVersio

    The Third International Symposium on Fungal Stress – ISFUS

    Get PDF
    Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, environmental science, ecology, biotechnology, medicine, and astrobiology

    Redescription of Adenomera diptyx (Boettger, 1885) (Anura, Leptodactylidae) and description of a closely related new species

    No full text
    Adenomera is a genus of Neotropical leaf-litter frogs widely distributed in South America and regarded taxonomic-wise challenging. One of these is the open-habitat Adenomera diptyx from Paraguay, which may correspond to a species complex. An integrative analysis of morphological variation, in combination with acoustic and molecular data of several populations from Argentina, Paraguay, and Brazil resulted in the recharacterization of nominal A. diptyx and the description of a new, closely related species. Adenomera diptyx is recognized by its advertisement call given at a high repetition rate (176–299 per minute), and the dorsal color pattern consisting of a light mid-dorsal line and a dark brown interorbital bar with irregular black edges. In comparison with A. diptyx, the new species, Adenomera guarani sp. nov., produces its advertisement call at a lower repetition rate (73–147 per minute), and the dorsal color pattern consists of a light, broad, mid-dorsal stripe and a mask-like patch in the interorbital region. The redefinition of A. diptyx will contribute to future studies focusing on the taxonomic status of other genetic lineages tentatively assigned to this species complex, which could represent additional unnamed species in the open-habitat Adenomera clade

    Calorie restriction hysteretically primes aging Saccharomyces cerevisiae toward more effective oxidative metabolism.

    Get PDF
    Calorie restriction (CR) is an intervention known to extend the lifespan of a wide variety of organisms. In S. cerevisiae, chronological lifespan is prolonged by decreasing glucose availability in the culture media, a model for CR. The mechanism has been proposed to involve an increase in the oxidative (versus fermentative) metabolism of glucose. Here, we measured wild-type and respiratory incompetent (ρ(0)) S. cerevisiae biomass formation, pH, oxygen and glucose consumption, and the evolution of ethanol, glycerol, acetate, pyruvate and succinate levels during the course of 28 days of chronological aging, aiming to identify metabolic changes responsible for the effects of CR. The concomitant and quantitative measurements allowed for calculations of conversion factors between different pairs of substrates and products, maximum specific substrate consumption and product formation rates and maximum specific growth rates. Interestingly, we found that the limitation of glucose availability in CR S. cerevisiae cultures hysteretically increases oxygen consumption rates many hours after the complete exhaustion of glucose from the media. Surprisingly, glucose-to-ethanol conversion and cellular growth supported by glucose were not quantitatively altered by CR. Instead, we found that CR primed the cells for earlier, faster and more efficient metabolism of respiratory substrates, especially ethanol. Since lifespan-enhancing effects of CR are absent in respiratory incompetent ρ(0) cells, we propose that the hysteretic effect of glucose limitation on oxidative metabolism is central toward chronological lifespan extension by CR in this yeast

    Vinasse fertirrigation alters soil resistome dynamics: an analysis based on metagenomic profiles

    No full text
    Abstract Every year around 300 Gl of vinasse, a by-product of ethanol distillation in sugarcane mills, are flushed into more than 9 Mha of sugarcane cropland in Brazil. This practice links fermentation waste management to fertilization for plant biomass production, and it is known as fertirrigation. Here we evaluate public datasets of soil metagenomes mining for changes in antibiotic resistance genes (ARGs) of soils from sugarcane mesocosms repeatedly amended with vinasse. The metagenomes were annotated using the ResFam database. We found that the abundance of open read frames (ORFs) annotated as ARGs changed significantly across 43 different families (p-value < 0.05). Co-occurrence network analysis revealed distinct patterns of interactions among ARGs, suggesting that nutrient amendment to soil microbial communities can impact on the coevolutionary dynamics of indigenous ARGs within soil resistome
    corecore