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Abstract 78 

Stress is a normal part of life for fungi, which can survive in environments considered 79 

inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, 80 

survive in, and transform the environment, even under severe stresses, many researchers 81 

are exploring the mechanisms that enable fungi to adapt to stress. The International 82 

Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the 83 

world who research fungal stress. This article discusses presentations given at the third 84 

ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing 85 

the state-of-the-art knowledge on fungal stress, a field that includes microbiology, 86 

agriculture, environmental science, ecology, biotechnology, medicine, and astrobiology. 87 

 88 
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mechanisms and responses. 90 
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 92 

1 Introduction 93 

Fungi play an essential role in many industrial, agricultural, and medical 94 

processes (Hyde et al., 2019; Rangel et al., 2018), and yet the importance and impact that 95 

these microorganisms have on humans and the environment is often underappreciated. 96 

Fungi can be a source of food and are essential for fermentation, including the production 97 

of bread, wine, beer, and other consumables. Fungi produce medicine, enzymes for 98 

industrial use, recombinant proteins, bioethanol, and biodiesel. Fungi serve as 99 

bioremediators, bioinsecticides, and can inhibit other plant-pathogenic microbes. Fungi 100 

can balance ecosystems via their roles as decomposers and by forming 101 

mechanical/physiological networks between other living systems. However, fungi can 102 

inflict diseases on humans, animals, and plants; degrade habitats or items of value; 103 

contaminate buildings; and act as a primary agent to spoil foods and feeds (Hyde et al., 104 

2019; Rangel et al., 2018).  105 

Fungi can survive in inhospitable and hostile environments. For instance, 106 

pathogenic fungi can survive in the interior of other organisms, despite the potential 107 

perils presented by anoxia and the host’s immune system (Brown et al., 2014). They can 108 

also withstand thermal stress, radiation, osmotic stress, desiccation, nutrient deprivation, 109 

and the presence of chaotropes, hydrophobes, and other aggressive compounds (Araújo et 110 

al., 2018; Araújo et al., 2019; Dias et al., 2018; Hassett et al., 2015; Rangel, 2011; Rangel 111 

et al., 2005; Yakimov et al., 2015). Moreover, enduring stress during growth can allow 112 

fungi to withstand other stresses (Rangel, 2011). While psychology considers stress a 113 

negative force that disturbs well-being, for organisms like most fungi, the exposure to 114 



stress is normal part of their lives (Hallsworth, 2018). In general, stress can enhance 115 

vitality of the system by stimulating energy generation and other adaptations. This is 116 

consistent with the observation of German philosopher Friedrich Nietzsche “What does 117 

not kill me, makes me stronger.” (Was mich nicht umbringt, macht mich stärker) 118 

(Nietzsche, 1888). 119 

Their ability to respond to, survive in, and transform the environment, even in the 120 

face of severe stress(es), is one of the reasons scientists seek to discover, understand, and 121 

utilize the biochemical and molecular mechanisms that enable fungi to adapt to stress. 122 

For some fungi, resistance to stress is a desirable characteristic; however, for other fungi, 123 

their resistance to the stress poses a problem for humans. Knowledge about the stress 124 

mechanisms of fungi may help scientists to develop methods that modulate their ability to 125 

adapt to a specific environment and, by doing so, benefit the interests of society. 126 

Further understanding about how stress affects fungi and how they circumvent 127 

potential constraints is the focus of the International Symposium on Fungal Stress 128 

(ISFUS). This Symposium takes an interdisciplinary approach attracting researchers with 129 

degrees in Mycology, Biology, Biochemistry, Molecular Biology, Genetics, Chemistry, 130 

Biotechnology, Microbial Physiology and Biomedical Sciences, Plant Pathology, 131 

Ecology, etc. Leading scientists from around the world have gathered in Brazil to present 132 

and discuss their research about fungal stress. ISFUS is the brainchild of Drauzio E. N. 133 

Rangel, who dreamed about bringing together scientists that focused specifically on the 134 

many stresses that fungi must endure. In 2014, Rangel invited senior scientists to the first 135 

ISFUS and acquired funding from São Paulo Research Foundation (FAPESP), to bring 136 

them to Brazil. Rangel was assisted by Alene Alder-Rangel and other members of the 137 



Organizing Committee. The first ISFUS took place in October 2014 in São Jose dos 138 

Campos, São Paulo, Brazil, at the Universidade do Vale do Paraiba. The second ISFUS 139 

occurred in May 2017 in Goiania, Goiás, Brazil, at the Universidade Federal de Goiás, 140 

and received funding from the Coordenação de Aperfeiçoamento de Pessoal de Nível 141 

Superior (CAPES) and the Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG). 142 

The third International Symposium on Fungal Stress (ISFUS-2019) returned to 143 

São José dos Campos, São Paulo, Brazil, and occurred on May 20 to 23, 2019 at the 144 

Hotel Nacional Inn. This Symposium was supported by grants from FAPESP and CAPES. 145 

The Instituto de Ciência e Tecnologia of the Universidade Brasil acted as the host 146 

institution. ISFUS-2019 was larger than the previous ISFUS meetings, with 39 featured 147 

speakers from 16 countries (Figures 1 and 2), 58 posters presentations, and around 125 148 

participants. Elsevier (Amsterdam, Netherlands) and Journal of Fungi (Basel, 149 

Switzerland) provided the students awards. Corporate sponsors were Biocontrol 150 

(Sertãozinho, SP, Brazil), Meter (São José dos Campos, SP, Brazil), and Alder’s English 151 

Services (São Jose dos Campos, SP, Brazil). The Organizing Committee included 152 

Drauzio E. N. Rangel, Alene Alder-Rangel, Claudia B. L. Campos, Ekaterina Dadachova, 153 

Gustavo H. Goldman, Gilberto U. L. Braga, Luis M. Corrochano, and John E. 154 

Hallsworth. The logo of the symposium features one of the most-studied ascomycetes, 155 

Aspergillus nidulans, and illustrates several key stress parameters that fungi must cope 156 

with to survive (Figure 3). The Annals of the third International Symposium on Fungal 157 

Stress, which feature abstracts from the presentations and posters, is available in the 158 

Electronic Supplementary Material 1. 159 

Each ISFUS has represented a major step in bringing together the community of 160 



fungal biologists interested in the mechanisms that fungi use to cope with stress. The first 161 

ISFUS as the initial meeting set the basic format of the symposium with a small size, a 162 

program touching different aspects of fungal stress biology, and activities in addition to 163 

the scientific program to increase scientific interactions among participants. The main 164 

role of ISFUS as an international forum for the exchange of ideas and to foster scientific 165 

interactions and international collaborations on fungal stress was clearly defined in the 166 

first ISFUS. The second and third ISFUS have grown upon these themes, expanding the 167 

number of topics covered, providing lecture time to students and young postdocs in the 168 

community, while keeping the number of participants both international and Brazilian to 169 

a level that allows easy and frequent interactions during lectures and free time. We 170 

anticipate that topics covered by future ISFUS will highlight the role of fungal stress 171 

biology in understanding how fungi contribute and adapt to global changes in the climate, 172 

and to provide alternative resources for food, feed, and bioenergy. 173 

A special issue has been published after each ISFUS that featured articles related 174 

to fungal stress primarily from researchers who presented at that ISFUS: for ISFUS-2014 175 

in Current Genetics (Rangel et al., 2015a; Rangel et al., 2015b), and for ISFUS-2017 in 176 

Fungal Biology, by Elsevier on behalf of the British Mycological Society (Alder-Rangel 177 

et al., 2018). After the success of that special issue, Fungal Biology agreed to publish this 178 

special issue arising from ISFUS-2019, which is titled “Fungal Adaptation to Hostile 179 

Challenges” focused on cellular biology, ecology, photobiology, environment, 180 

agricultural, industrial, and medical mycology in the context of fungal stress 181 

(Acheampong et al., 2019; Antal et al., 2019; Araújo et al., 2019; Brown et al., 2020; 182 

Dias et al., 2018; Fomina et al., 2019; Harari et al., 2019; Kelliher et al., 2019; Király et 183 



al., 2019; Laz et al., 2019; Malo et al., 2019; Medina et al., 2020; Mendoza-Martínez et 184 

al., 2019; Rodrigues et al., 2019; Schumacher and Gorbushina, 2020; Sethiya et al., 2019; 185 

Tagua et al., 2019; Walker and Basso, 2019; Yu et al., 2020; Yuan et al., 2019), and 186 

several other manuscripts under review. 187 

2 The third International Symposium on Fungal Stress - a synopsis 188 

Although the Symposium started Monday, May 20, most international speakers 189 

arrived in Brazil on Saturday, May 18 to have time to recuperate from long flights. They 190 

took the opportunity to become better acquainted with each other and São Jose dos 191 

Campos with a tour of Vicentina Aranha Park, which features live music, a craft fair, and 192 

farmers market on Sunday morning. Amanda Estella Alder Rangel, the organizer’s seven-193 

year-old daughter, helped lead the tour and even translate when needed for our foreign 194 

guests helping them interact with locals, make purchases, etc. (Figure 4). 195 

The Symposium officially began Monday morning with a welcome presentation 196 

by Drauzio E.N. Rangel. He explained how the ISFUS series originated and that the 197 

motivation for the meetings has been driven throughout by the enthusiasm and hard work 198 

of his family. He welcomed the delegation by discussing the joyful nature of science. He 199 

talked about happiness with examples from his own life. After requesting that everyone 200 

recall their happiest memories, he asked them to stand up and join hands in a circle, 201 

reminiscent of a mushroom fairy ring, around the auditorium. Rangel went on to talk 202 

about intuition involved in scientific discovery and having an “open heart” during the 203 

research process (Figure 5). 204 

The Symposium was organized around seven general topics related to fungal 205 

stress.  206 



1. Stress mechanisms and responses in fungi: molecular biology, biochemistry, 207 

biophysics, and cellular biology;  208 

2. Fungal photobiology, clock regulation, and stress; 209 

3. Fungal stress in industry; 210 

4. Fungal biology in extreme environments; 211 

5. Ionizing radiation, heat, and other stresses in fungal biology; 212 

6. Stress in populations, fungal communities, and symbiotic interactions; 213 

7. Stress in fungal pathogenesis. 214 

The following text provides a synopsis of each topic, arranged in the order 215 

presented during the Symposium.  216 

2.1 Stress mechanisms and responses in fungi: molecular biology, biochemistry, 217 

biophysics, and cellular biology 218 

Representatives of the fungal kingdom occupy almost every conceivable niche on 219 

Earth which is a testament to their versatility and evolutionary adaptation to their 220 

environment. A broad understanding of how fungi have adapted to diverse environments 221 

can come from genetic screening approaches that identify genes responsible for 222 

conferring tolerance. Researchers can then drill down for a deeper understanding of how 223 

these systems work at the molecular and evolutionary levels to explain the adaptation 224 

process. A consequence of this is an appreciation of how environmental fluctuation might 225 

challenge the viability of susceptible fungal species. The mechanisms involved in 226 

coping/adapting to stress are as diverse as the array of fungal species studied. Regardless 227 

of the stress/organism studied, rarely are the identified signaling and other biochemical 228 

and physiological pathways and elements unique to one organism. In addition, the 229 



function of stress-related pathways often spans growth, developmental, and reproductive 230 

networks, which have functions in non-stress conditions (Brown et al., 2017; Rangel et al., 231 

2018). 232 

Martin Kupiec  gave the first presentation at ISFUS-2019. He focused on 233 

telomeres, which are the ends of the linear eukaryotic chromosomes. Telomeres are 234 

essential for maintaining the integrity of the genome and play important roles in aging 235 

and cancer (Mersaoui and Wellinger, 2019). A systematic analysis identified ~500 genes 236 

that regulate telomere length in the yeast Saccharomyces cerevisiae (Askree et al., 2004; 237 

Ungar et al., 2009). Kupiec’s group also found that small molecules, such as ethanol, 238 

caffeine, and acetic acid, can affect telomere length. Having a full list of genes and 239 

physiological actuators enabled research about the interface between the genome and the 240 

environment (to address the contributions of nature vs. nurture on physiological 241 

outcomes). Kupiec reported finding genes that mediate the environmental signal 242 

transduction to the telomere-regulating genes (Harari et al., 2019; Harari and Kupiec, 243 

2018; Mersaoui and Wellinger, 2019; Romano et al., 2013). 244 

István Pócsi talked about the Fungal Stress Response Database (FSRD) (de Vries 245 

et al., 2017; Karányi et al., 2013) and Fungal Stress Database (FSD) (de Vries et al., 2017; 246 

Orosz et al., 2018). The FSRD accommodates 43,725 stress protein orthologs identified 247 

in 41 fully sequenced genomes of 39 fungal species (de Vries et al., 2017). The FSD is a 248 

repository of 1,412 photos taken on agar plate colonies of 17 Aspergillus species, exposed 249 

to oxidative, high-osmolarity, heavy metal, and cell wall integrity stress (de Vries et al., 250 

2017; Orosz et al., 2018). Data in the FSRD were used to identify stress response protein 251 

orthologs in Drechmeria coniospora (Zhang et al., 2016b) and several Aspergillus spp. 252 



(de Vries et al., 2017; Emri et al., 2018). Data in the FSRD and FSD were used (i) in 253 

evolutionary biological studies in the aspergilli (Emri et al., 2018), and (ii) to shed light 254 

on cadmium tolerance of Aspergillus fumigatus (Antal et al., 2019; Bakti et al., 2018; 255 

Kurucz et al., 2018a). 256 

David E. Levin discussed how various stresses activate the yeast SAPK Hog1 257 

and how the cell mobilizes stress-specific outputs from activated Hog1. In response to 258 

hyper-osmotic shock, Hog1 induces the production of glycerol and its accumulation 259 

through closure of glycerol channel Fps1. Hog1 activated by the toxic metalloid arsenite 260 

similarly induces closure of Fps1, the main entry port for this toxin. However, under 261 

conditions of arsenite stress, cells do not accumulate glycerol. This is because S. 262 

cerevisiae uses a methylated metabolite of arsenite to inhibit the first enzymatic step in 263 

glycerol biosynthesis. Levin’s work provides insight into the mechanisms by which Hog1, 264 

as stimulated by two different stresses, can evoke physiologically coherent, but opposite, 265 

outputs (Laz et al., 2019; Lee and Levin, 2018, 2019; Lee et al., 2019; Lee et al., 2013). 266 

Oded Yarden talked about how the Nuclear DBF-related (NDR) kinase colonial 267 

temperature sensitive-1 (cot-1) plays a role in the regulation of polar growth and 268 

development in Neurospora crassa and other fungi (Ziv et al., 2009). Cot-1 is a kinase in 269 

the RAM pathway that is widely conserved in cell wall maintenance eukaryotes (Osherov 270 

and Yarden, 2010; Saputo et al., 2012). Osmotic, oxidative, and other stresses result in 271 

partial phenotypic suppression of the cot-1 mutant defects (Gorovits and Yarden, 2003). 272 

Some of the phenotypic responses involve type 2A phosphatases and the translational 273 

regulator GUL1 (Herold et al., 2019; Herold and Yarden, 2017; Shomin-Levi and Yarden, 274 

2017). 275 



Michelle Momany explained that many fungal infections start with the inhalation 276 

of spores from the environment. Despite the importance of spores to infection, little is 277 

known about how the environment when sporulation occurs impacts fungal spores. 278 

Momany’s group used RNAseq to examine A. fumigatus conidia (asexual spores) 279 

produced under several conditions including low Zn, high temperature, and high salt. 280 

They found that conidial transcriptomes from differing conditions contain a large set of 281 

common transcripts and a much smaller set of condition-enhanced transcripts. Generally, 282 

the condition-enhanced transcripts do not appear to be unique, rather they appear to differ 283 

mostly in level of expression. 284 

Jesús Aguirre’s presentation addressed the signaling role of reactive oxygen 285 

species (ROS) in the regulation of cell differentiation in A. nidulans and other fungi. He 286 

showed that in A. nidulans NapA, a redox-regulated transcription factor, which is 287 

homologous to yeast Yap1, is involved not only in the antioxidant response, but also in 288 

the regulation of genes involved in nutrient assimilation, secondary metabolism, and 289 

development, and how this is related to peroxiredoxin function (Mendoza-Martínez et al., 290 

2019; Mendoza-Martínez et al., 2017).  291 

Gustavo H. Goldman discussed how the CrzA and ZipD transcription factors are 292 

involved in calcium metabolism and the caspofungin paradoxical effect in the human 293 

pathogenic species A. fumigatus (Ries et al., 2017). At low concentrations of the drug, 294 

inhibition occurs, whereas that inhibition is lost at higher concentrations. 295 

John E. Hallsworth began by explaining that we do not have any term or concept 296 

to identify a stress-free state in microorganisms (Hallsworth, 2018). The talk focused on 297 

what cellular stress actually is, taking a lucid tour around the logical geography of an 298 



otherwise complex topic. The distinction between toxicity and stress was discussed 299 

(Hallsworth, 2018), and data were presented relating to the water activity limit-for-life for 300 

halophilic bacteria and Archaea (Lee et al., 2018; Stevenson et al., 2015) and the extreme 301 

xerophile/halophile Aspergillus penicillioides (Stevenson et al., 2017). Hallsworth 302 

concluded by summarizing the 20 years of work which led to a new limit-for-life on 303 

Earth (Stevenson et al., 2017); this fascinating story revolved around a wooden owl 304 

which was the source of the most xerophilic microbe thus-far discovered: a strain of A. 305 

penicillioides (Hallsworth, 2019). 306 

2.2 Fungal photobiology, clock regulation, and stress 307 

The second day of the Symposium was devoted to fungal photobiology. Fungi use 308 

light as an environmental signal to regulate developmental transitions, modulate their 309 

direction of growth, and modify their metabolism. Fungi often synthesize protective 310 

pigments, melanins, and carotenoids, in response to illumination because an excess of 311 

light can produce reactive oxygen species and UV radiation can damage DNA (Brancini 312 

et al., 2018; Brancini et al., 2019; Corrochano, 2019; Yu and Fischer, 2019). In addition, 313 

the presence of light during fungal growth is known to up-regulate a variety of stress 314 

genes that induce higher conidial tolerance to UV radiation, heat, and osmotic stress 315 

(Dias et al., 2019; Rangel et al., 2015c; Rangel et al., 2011). Many organisms, including 316 

fungi, have circadian clocks to anticipate daily changes in illumination, temperature, and 317 

water availability/humidity, as well as several environmental signals, including light, that 318 

regulate the activity of circadian clocks (Dunlap and Loros, 2017). 319 

Deborah Bell-Pedersen stated that evidence supporting circadian clock 320 

regulation of mRNA translation exists in several organisms (Caster et al., 2016; Jouffe et 321 



al., 2013; Robles et al., 2014); however, the underlying mechanisms for translational 322 

control are largely unknown. Bell-Pedersen’s group discovered that the clock regulates 323 

the activity of the N. crassa eIF2α kinase CPC-3. Daytime active CPC-3 promotes 324 

phosphorylation and inactivation of the conserved translation initiation factor eIF2α, 325 

leading to reduced translation of specific mRNAs during the day and likely coordinating 326 

mRNA translation with increased energy availability and reduced stress at night.  327 

Luis Larrondo ’s thought-provoking talk was about light as a source of 328 

information, stress, biotechnological applications, and art. He described how the model 329 

species N. crassa can be used as a highly sensitive light sensor to record its environment, 330 

effectively acting as a photocopier of information or the film in a pin hole camera. The 331 

overlap between science and art was reflected in the gift of a N. crassa derived image, 332 

which was presented to Pope Francis during his visit to Chile. 333 

Reinhard Fischer focused on A. nidulans and Alternaria alternata, which are 334 

two ascomycetes that are able to adapt to many different environments. Light is a reliable 335 

indicator for potential stressful conditions, and light sensing is tightly coupled to stress 336 

responses at the molecular level. For instance, the red-light sensor phytochrome uses the 337 

HOG pathway for signal transduction. In addition, both fungi use a flavin-containing 338 

protein as a blue-light receptor, and A. alternata an opsin for green light sensing. 339 

Fischer’s work focuses on the analysis of the interplay of the different light-sensing 340 

systems and their link to stress adaptation (Igbalajobi et al., 2019; Yu and Fischer, 2019; 341 

Yu et al., 2016), particularly the link between red light and temperature sensing via the 342 

phytochrome FphA (Yu et al., 2019). 343 

Christina M. Kelliher  introduced compensation, a core principle of all circadian 344 



clocks where the period of approximately 24 hours is maintained across a range of 345 

physiologically relevant environmental conditions (Pittendrigh and Caldarola, 1973). A 346 

handful of genes involved in transcriptional regulation are required for the N. crassa 347 

clock to compensate at both high levels of glucose and in starvation conditions—an RNA 348 

helicase period-1 (Emerson et al., 2015), a co-repressor rco-1 (Olivares-Yañez et al., 349 

2016), and a transcription factor repressor csp-1 (Sancar et al., 2012). The full mechanism 350 

of nutritional compensation, including upstream signaling pathways and downstream 351 

regulation on core circadian clock factors, is not characterized in any eukaryotic model. 352 

Kelliher and colleagues leveraged the whole genome knockout collection of N. crassa 353 

(Colot et al., 2006) in a screen to identify genes that are required for clock compensation 354 

under starvation, beginning with canonical carbon source signaling pathways, kinases, 355 

and transcriptional regulators. Currently, two kinases and two novel RNA-binding 356 

proteins have been identified as effectors required for normal nutritional compensation of 357 

the clock at high and no glucose levels in Neurospora (Kelliher et al., 2019).  358 

Mikael Molin  highlighted the ability of S. cerevisiae to respond to light despite 359 

lacking genes homologous to dedicated light receptors. Light sensing in this yeast is 360 

intimately connected to oxidative stress resistance and a group of peroxidases and 361 

peroxide receptors, peroxiredoxins, which seem to regulate stress-related kinases in a 362 

unique manner involving hydrogen peroxide signaling. Utilizing a genome-wide genetic 363 

screen, his group has also explored which parts of the cellular network that growth of S. 364 

cerevisiae in the presence of light engages. The data may form a framework for 365 

understanding connections between light exposure, protein synthesis, and stress-related 366 

kinases such as the MAPKs and PKA in fungi and higher organisms (Bodvard et al., 2013; 367 



Bodvard et al., 2017; Bodvard et al., 2011; Nystrom et al., 2012). 368 

Julia Schumacher explained that fungi sharing light-flooded habitats with 369 

phototrophic organisms suffer from light-induced stresses and experience altered light 370 

spectra (‘green gap’) enriched for green and far-red light. The plant pathogenic 371 

Leotiomycete Botrytis cinerea responds to light qualities covering the entire visible 372 

spectrum and beyond and uses light to coordinate stress responses, growth, reproduction, 373 

and host infection (Schumacher, 2017). The equally high number of photoreceptors in the 374 

rock-inhabiting black Eurotiomycete Knufia petricola suggests that photoregulation is 375 

equally important in mutualistic interactions of fungi with microbial phototrophs.  376 

Gerhard Braus described how the coordination of the control of fungal reactions 377 

to light is impaired if cellular protein degradation is disturbed. The COP9 signalosome 378 

multiprotein complex is necessary for light regulation, stress responses, and development. 379 

It also coordinates secondary metabolism in A. nidulans (Busch et al., 2007) and controls, 380 

together with the protein substrate receptor exchange factor CandA/Cand1, the covalent 381 

labeling of substrates with chains of the small modifier ubiquitin for proteasome-382 

mediated protein degradation (Braus et al., 2010). CandA of A. nidulans is required for 383 

light regulation of development and secondary metabolite formation (Köhler et al., 2019). 384 

The COP9 signalosome serves as the platform that interacts with numerous additional 385 

proteins, such as the deubiquitinase UspA, which is required to fine-tune light controlled 386 

development and secondary metabolism (Meister et al., 2019). Together, the specific 387 

control of protein homeostasis plays an important role for light induced stress with 388 

consequences in fungal development and secondary metabolism. 389 

Luis Corrochano discussed how light regulates developmental pathways in most 390 



fungi. Whereas the roles of light in the ecophysiology of plants and other primary 391 

producers, or the neurology and physiology of animal systems, is widely appreciated; it 392 

may seem counter-intuitive that heterotrophic fungi are controlled by this environmental 393 

signal. Development and secondary metabolism are often coordinated through the activity 394 

of the velvet protein complex (Bayram and Braus, 2012). In N. crassa, the velvet protein 395 

VE-1 interacts in vegetative hyphae with the velvet protein VE-2 and the 396 

methyltransferase LAE-1. This velvet complex regulates the growth of aerial hyphae and 397 

the accumulation of carotenoids after light exposure in vegetative mycelia (Bayram et al., 398 

2019). Corrochano’s group observed that VE-1 is unstable and proposed that the 399 

regulation of VE-1 degradation is a relevant aspect of conidiation and its regulation by 400 

light in N. crassa. 401 

Guilherme T. P. Brancini’s talk focused on how transcriptomics and proteomics 402 

can be combined to elucidate light responses in the entomopathogenic fungus 403 

Metarhizium acridum. Exposing M. acridum mycelium to light resulted in changes at the 404 

mRNA level for 1,128 genes or 11.3% of the genome (Brancini et al., 2019). High-405 

throughput proteomics revealed that the abundance of only 57 proteins changed 406 

significantly under the same conditions. Light downregulated proteins involved in 407 

translation, including subunits of the eukaryotic translation initiation factor 3, the eIF5A-408 

activating enzyme deoxyhypusine hydroxylase, and ribosomal proteins. As reducing and 409 

reprogramming translational activity are known cellular responses to stress (Crawford 410 

and Pavitt, 2019; Spriggs et al., 2010; Yamasaki and Anderson, 2008), this result 411 

indicates that light acts as both a signal and a source of stress in M. acridum. The reduced 412 

translational activity is thus a potential explanation for the small number of light-413 



regulated proteins. Therefore, measuring protein levels is essential to fully understand 414 

light responses in fungi (Brancini et al., 2019). 415 

Gilberto U. L. Braga examined how recent increases in consumer awareness 416 

about and legislation regarding environmental and human health, as well as the urgent 417 

need to improve food security, are driving increased demand for safer antimicrobials. A 418 

step-change is needed in the approaches for controlling pre- and post-harvest diseases and 419 

food-borne human pathogens. The use of light-activated antimicrobial substances for the 420 

so-called photodynamic treatment of diseases is known to be effective in a clinical 421 

context (Brancini et al., 2016; Tonani et al., 2018). They could be equally effective for 422 

use in agriculture to control plant-pathogenic fungi and bacteria, and to eliminate food-423 

borne human pathogens from seeds, sprouted seeds, fruits, and vegetables (Fracarolli et 424 

al., 2016; Gonzales et al., 2017). Braga took a holistic approach in reviewing recent 425 

findings on (i) the ecology of naturally-occurring, (ii) photodynamic processes including 426 

the light-activated antimicrobial activities of some plant metabolites, and (iii) fungus-427 

induced photosensitization of plants, against the backdrop of existing knowledge. The 428 

inhibitory mechanisms of both natural and synthetic light-activated substances, known as 429 

photosensitizers, were discussed in the contexts of microbial stress biology and 430 

agricultural biotechnology. 431 

2.3 Fungal stress in industry 432 

Wednesday began with presentations linking fungi, industrial applications, and 433 

stress in several ways. Notably, fungi are a continuous concern in the food industry as 434 

they spoil numerous products. To discourage fungi from proliferating on nutrient-rich 435 

food stuffs, several strategies are employed including pretreatments, storage conditions, 436 



and preservatives. However, fungi can circumvent many of the obstacles used in food 437 

production to prevent this. A small subset of fungi, “spoil” food, but others can enhance 438 

the properties of food, make it more digestible, add vitamins, and protect against other 439 

fungi that can form toxic compounds. Alternatively, fungi are used widely in industry to 440 

produce metabolites, such as antibiotics and other drugs, organic acids, vitamins, and 441 

enzymes. This can be by either liquid fermentation or solid-state fermentation, in which 442 

the fungi are grown on grain or other solid material(s). Because of heat production, low 443 

water activity, drying, cold-storage, freezing, and anoxia, fungi encounter several stresses 444 

when present in food or during fermentation. As fungal strains used in biotechnology are 445 

selected for their ability to potentially synthesize commercial amounts of product, 446 

metabolic routings inside the cells make the desired product heavily burdened, far above 447 

the “normal” level. This might lead to very specific stresses due to accumulation of 448 

intermediates inside the cell. Further, expression of heterologous protein in a fungus may 449 

result in the “unfolded protein response” (Guillemette et al., 2011). The following 450 

contributions deal with these stresses with yeast cells, that have long been used as a 451 

microbial workhorse for fermentation and other applications. 452 

Graeme M. Walker discussed how during industrial yeast fermentation 453 

processes, cells of S. cerevisiae are subjected to several physical, chemical, and 454 

biological stress factors that can detrimentally affect ethanol yields and overall efficiency 455 

of production. These stresses include ethanol stress osmostress, pH, low water activity, 456 

and temperature shock, as well as biotic stress due to contaminating microorganisms. 457 

Several physiological cell engineering approaches to mitigate stress during industrial 458 

fermentations are available with beneficial impact not only for yeast, but more generally 459 



for industrial fungal bioprocesses (Birch and Walker, 2000; Trofimova et al., 2010; 460 

Walker, 1998; Walker and Basso, 2019; Walker and Walker, 2018). 461 

 462 

Thiago Olitta Basso stated that during industrial fermentations, yeasts face a myriad of 463 

stress factors (Della-Bianca et al., 2013). Additional obstacles arise in the second-464 

generation ethanol production process, where lignocellulosic residues are the substrates 465 

for fermentation (Klinke et al., 2004). He discussed effects of major lignocellulosic 466 

compounds on important quantitative physiological parameters of S. cerevisiae strains, 467 

the organism of choice for ethanol production. Basso’s group has also investigated how 468 

the growth of S. cerevisiae under full anaerobiosis depends on the widely used anaerobic 469 

growth factors, ergosterol and oleic acid (da Costa et al., 2018). For that purpose, a 470 

continuous cultivation setup was employed. The lipid (fatty acid and sterol) composition 471 

dramatically altered when cells were grown anaerobically without anaerobic growth 472 

factors. These lipid alterations are probably related to the decreased fitness of cells when 473 

exposed to typical stresses encountered in industry, e.g. low pH and chaotropicity caused 474 

by high ethanol concentration (Walker and Basso, 2019)  475 

 476 

2.4 Fungal biology in extreme environments 477 

The next session of ISFUS-2019 focused on fungi in extreme environments. Very 478 

few microbes, given the dynamic nature of their habitats and environmental events, 479 

experience biophysically stable conditions or avoid hostile environmental challenges. 480 

Stress and events that are biophysically or physicochemically extreme (or, at least, 481 

challenging) are the norm for living systems (Araújo et al., 2018; Araújo et al., 2019; 482 



Hallsworth, 2018; Lovett and St. Leger, 2015). However, some microbes seem to thrive 483 

under conditions that are more extreme than those tolerated by most taxa. These include 484 

the fungi that inhabit niches within the cryosphere, and those on rock surfaces or the 485 

walls of artificial structures such as buildings and space craft.  486 

Laura Selbmann works with Friedmanniomyces endolithicus, which is the most 487 

widespread black fungus from the endolithic communities of the ice-free areas of 488 

Victoria Land, Antarctica, (Selbmann et al., 2005), accounted as the closest Martian 489 

analogue on Earth (Nienow and Friedmann, 1993; Onofri et al., 2004), indicating the 490 

highest degree of adaptation and stress tolerance  (Pacelli et al., 2018). Selbmann 491 

presented the first comparative genomic study to highlight the peculiar traits of this 492 

fungus to elucidate the genetic base of its success under extreme conditions. More than 493 

60% of genes were duplicated in F. endolithicus, and among the other extremophiles used 494 

as comparison, it had the highest number of unique protein-encoding genes, not shared 495 

with others. Many of these over expressed genes were involved in meristematic growth 496 

and cold adaptation, both characteristics fundamental for the success in a hyper-stressing 497 

and hyper-cold environment. 498 

Anna Gorbushina studies the interface between the atmosphere and mineral 499 

substrates, which is the oldest terrestrial habitat (Gorbushina, 2007). Gorbushina and 500 

colleagues isolated novel black fungi from desert rock surfaces (Nai et al., 2013) and 501 

anthropogenic habitats such as building materials and solar panels (Martin-Sanchez et al., 502 

2018). Their studies revealed that microbial biofilms on solid subaerial surfaces are 503 

dominated by highly stress-resistant microcolonial black fungi. Using one of them 504 

(Knufia petricola strain A95) as a model (Nai et al., 2013; Noack-Schönmann et al., 505 



2014), Gorbushina’s group conduct experiments to clarify interactions of black fungi 506 

with inorganic substrates. Available mutants were used to determine the functional 507 

consequences of changes in the outer cell wall envelopes – from excreted extracellular 508 

polymeric substances (EPS) (Breitenbach et al., 2018) to layers of protective pigments. A 509 

genetic toolbox to manipulate this representative of Chaetothyriales is in further 510 

development. Gorbushina’s long-term goal is to understand the fundamental mechanisms 511 

of how black fungi are able (i) to adhere to dry atmosphere-exposed surfaces, (ii) to 512 

survive multiple stresses, and (iii) to change the underlying substrates including rocks.  513 

Rocco L. Mancinelli explained that Earth’s biosphere has evolved for more than 514 

3 billion years shielded by the atmosphere and magnetosphere that has protected 515 

terrestrial life from the hostile outer space environment. Within the last 50 years, space 516 

technology has provided tools for transporting terrestrial life beyond this protective shield 517 

to study, in situ, their responses to selected conditions of space. Microbes have flown in 518 

space since the early 1960s and nearly all organisms exposed to the space environment 519 

were killed except Bacillus subtilis spores. Recent studies show that UV radiation and not 520 

space vacuum is the primary cause of cell death in the short term. Within a spacecraft, the 521 

immediate and primary physical factor organisms need to contend with is microgravity. 522 

Data from the International Space Station and Mir  illustrate that space station habitats are 523 

conducive to fungal growth, especially Aspergillus and Penicillium. Data gathered from 524 

space experiments provide a better understanding of the physiology of organisms and 525 

their stress responses (De Middeleer et al., 2019; Horneck et al., 2010; Mancinelli, 2015; 526 

Nicholson et al., 2011; Onofri et al., 2012). 527 

 528 



2.5 Ionizing radiation, heat, and other stresses in fungal biology 529 

Confronting multiple stresses simultaneously is the norm for any living organism 530 

and fungi are no exception to this (Rangel et al., 2018). Survival and pathogenesis depend 531 

on the ability of fungi to overcome environmentally imposed stress factors or host 532 

defenses, while successful fungal cultivation in industry depends on optimal conditions 533 

for growth, physiology, and metabolite production. For simplicity, fungal stress factors 534 

are often dealt with in isolation, but this often obscures the complexity of the different 535 

stresses that can be experienced simultaneously and possible differences and/or 536 

similarities between them and the stress responses involved. More attention should be 537 

paid to the mechanisms involved in mitigating against multiple simultaneous stresses. 538 

Furthermore, stress factors can induce specific or general cellular responses, while 539 

intrinsic structural properties of fungi may also be effective against a range of stress 540 

factors. A good example is fungal melanin which can play an important protective role 541 

against irradiation, desiccation, and toxic metals, as well as others (Cordero et al., 2017; 542 

Gorbushina, 2007). Multiple mechanisms exist for toxic metal tolerance, both intrinsic 543 

and specific, with some leading to metal immobilization within and outside cells, and 544 

external deposition as mineral forms (Gadd, 2017b). Such mechanisms have a key 545 

significance in geomycology (Gadd, 2007). Several speakers discussed how the ability of 546 

fungi to react to single and multiple stresses under a wide range of conditions is key to 547 

their survival and participation in a range of important environmental and applied 548 

processes.  549 

The goal of Ekaterina Dadachova’s study was to develop radiation adaptive 550 

fungal strains through a protracted exposure to 225Actinium - a mixed α-, β-, and γ-emitter. 551 



Dadachova’s group aimed to develop strains that would be more sensitive to low levels of 552 

radiation, and possibly develop the ability to discern between qualitatively different 553 

forms of radiation. Their results demonstrated that a radio-stimulatory response in fungus 554 

is due not only to direct interaction with ionizing radiation but is also a result of 555 

interaction with some by-product of the ionizing radiation with the environment (Turick 556 

et al., 2011). This response suggests that the adaptation positions the fungus to sense 557 

radiation in its environment even in the absence of direct contact and respond to it in a 558 

melanin-dependent fashion. Melanin pigment could be acting as a signaling molecule 559 

through its redox capacity (Turick et al., 2011), and possibly like chlorophyll, it could 560 

harness the energy generated by ionizing radiation if it is sensing and adjusting fungal 561 

growth response (Malo and Dadachova, 2019).  562 

Geoffrey M. Gadd described the impact of fungi on geological processes in the 563 

context of geomycology. Fungi are important geoactive agents in soil, rock, and mineral 564 

surface layers, whether free-living or in symbioses with phototrophs, and significant 565 

biodeteriogens of rock and mineral-based substrates in the built environment, all these 566 

processes involving metal and mineral transformations (Gadd, 2016; Gadd, 2017a; Gadd, 567 

2017b). The abilities of fungi to mediate changes in metal mobility underpin a variety of 568 

tolerance mechanisms and are also important in rock and mineral dissolution and 569 

bioweathering, element cycling, and biomineralization (Gadd, 2016; Gadd, 2017a; Gadd, 570 

2017b). Metal and mineral transformations by fungi are also of applied potential for 571 

bioremediation, element biorecovery, and the production of useful micro- and nanoscale 572 

biomineral products (Gadd, 2010; Liang and Gadd, 2017).  573 

Radamés J. B. Cordero explained that melanins are polymeric pigments capable 574 



of trapping much of the sunlight that reaches the Earth’s surface. The absorbed radiation 575 

energy is translated in the form of heat, and many organisms rely on pigments like 576 

melanin to maintain comfortable body temperatures in cold environments. This 577 

mechanism of pigment-mediated thermoregulation is also known as thermal melanism 578 

and is observed in ectothermic animals, including arthropods and reptiles (Clusella 579 

Trullas et al., 2007). Cordero discussed the first evidence that thermal melanism is also 580 

relevant in microbiology (Cordero et al., 2018). A database of yeast isolates around the 581 

globe revealed that, on average, dark-colored species are common at high latitudes. A 582 

comparison between melanized and non-melanized clones of the yeast Cryptococcus 583 

neoformans demonstrated that fungal melanin increases heat capture from sunlight and 584 

provides a growth advantage under cold stress. A recent study on mushroom assemblages 585 

confirmed the relevance of thermal melanism in microbiology (Krah et al., 2019). These 586 

studies suggest that melanization is an ancient mechanism for harvesting energy and 587 

introduce fungi as a new eukaryotic model system to study thermal biology. 588 

Tamás Emri stated that the survival of fungi in an environment such as the 589 

human body depends on how they can cope with the combination of stresses occurring 590 

there rather than on how efficiently they can respond to a single stress. Combined stress 591 

experiments demonstrated that even a relatively modest level of stress, which has no 592 

detectable effect on cultures, can significantly modify the behavior of fungi 593 

concomitantly suffering from another stress (Brown et al., 2014; Kurucz et al., 2018b). 594 

Hence, the stress tolerance attributes determined in vitro in single stress experiments, 595 

drug susceptibility values, and even the Achilles’ heels of the fungal stress response 596 

systems can change markedly when fungi grow in vivo under combined stress conditions. 597 



Revealing and understanding the interplays and cross-talks between the responses to 598 

various types of environmental stress may help us to set up new in vitro experimental 599 

systems mimicking better in vivo conditions for fungi. Such experimental arrangements 600 

would help us to understand the behavior and adaptation of fungi in their natural habitats 601 

and, hence, to control their growths more effectively. 602 

Drauzio E. N. Rangel stated that exposure of Metarhizium robertsii during 603 

mycelial growth to one type of abiotic stress (e.g. nutritive stress, osmotic stress, heat 604 

shock stress, or oxidative stress) induces higher conidial tolerance to many other stress 605 

conditions (Rangel et al., 2006; Rangel et al., 2008), a phenomenon called cross-606 

protection (Rangel, 2011). The higher tolerance of conidia produced under abiotic stress 607 

is due to high trehalose and mannitol accumulation inside conidia (Rangel et al., 2008; 608 

Rangel and Roberts, 2018). However, there is a paucity of information about whether 609 

growth under biotic stress can confer cross-protection against abiotic stresses. Rangel’s 610 

presentation focused on the implications of biotic stress caused by Trichoderma 611 

atroviride in M. robertsii. T. atroviride causes nutritive, osmotic, and oxidative stresses in 612 

its fungal opponents (Delgado-Jarana et al., 2006; Druzhinina et al., 2011). Therefore, his 613 

research analyzed the stress tolerance of M. robertsii conidia produced under dual culture 614 

with T. atroviride (Medina et al., 2020). 615 

2.6 Stress in populations, fungal communities, and symbiotic interactions 616 

Competition for limited resources is the most common mode of interaction in 617 

fungal communities. Consequently, fungi have evolved a multitude of defense 618 

mechanisms that allow them to protect their habitat from aggressive invaders. Above this, 619 

the obligate (mycoparasitism) and facultative fungivory appear to be essentially more 620 



widespread than previously considered. The increasing numbers of genome-wide studies 621 

evidence the long evolutionary history of interfungal relations (Druzhinina et al., 2011; 622 

Ujor et al., 2018). 623 

Irina Druzhinina  presented her investigation about the competitive interaction 624 

between the two environmentally opportunistic biotrophic hypocrealean fungi. Contrary 625 

to numerous cases of a ‘deadlock’ reaction when the growth of contacted fungi remains 626 

arrested, fungi such as Trichoderma guizhouense can overgrow Fusarium oxysporum, 627 

cause sporadic cell death, and inhibit its growth (Zhang et al., 2016a). Transcriptomic 628 

analysis of this interaction found that T. guizhouense underwent a succession of 629 

metabolic stresses while F. oxysporum responded relatively neutrally but used the 630 

constitutive expression of several toxin-encoding genes as a protective strategy. Because 631 

of these toxins, T. guizhouense could not approach this competitor on the substrate 632 

surface and attacked F. oxysporum from above. The success of T. guizhouense was 633 

secured by excessive production of hydrogen peroxide (H2O2), which was stored in 634 

microscopic bag-like guttation droplets hanging on the contacting hyphae. The deletion 635 

of NADPH oxidase nox1 and its regulator, nor1, in T. guizhouense led to a substantial 636 

decrease in H2O2 formation with concomitant loss of antagonistic activity (Zhang et al., 637 

2019). 638 

Florian F. Bauer explained that stress responses in microorganisms have 639 

primarily been investigated with regards to physical or chemical factors, and impressive 640 

data sets have been accumulated. In S. cerevisiae, these data provide one of the most 641 

systematic and widest evaluation of stress responses of any biological system. Yet, it can 642 

be argued that the evolutionary relevance of stresses imposed by environmental is less 643 



significant than stresses that are due to the presence of competing microorganisms. An 644 

integrated approach, including the analysis of multispecies consortia (Bagheri et al., 645 

2018), laboratory-based evolution with biotic selection pressures, synthetic ecology 646 

(Naidoo et al., 2019), genome sequencing, and transcriptome analysis (Shekhawat et al., 647 

2019), suggested several mechanisms by which yeast respond to biotic stresses and 648 

challenges in multispecies systems, including metabolic adaptations to optimize resource 649 

utilization (Bagheri et al., 2018), modulation of cell wall composition and properties 650 

(Rossouw et al., 2018), and the importance of direct physical contact (Rossouw et al., 651 

2018) between cells in regulating the response to the presence of other species.  652 

Natalia Requena explained that microorganisms are permanently challenged 653 

with hazardous environmental conditions that restrict their potential for survival and 654 

reproduction. To overcome this, many of them evolutionarily opted for a life in symbiosis. 655 

Fungi from the Glomeromycotina engage in mutualistic interaction with plant roots 656 

starting more than 450 million years ago. Since then, plants have provided fungi with 657 

carbohydrates and lipids in return for improved water uptake, drought tolerance, and 658 

inorganic fertilization, especially phosphate. The arbuscular mycorrhizal (AM) symbiosis 659 

is a fine-tuned regulated process where fungal colonization is limited to the root cortex, 660 

contrasting with fungal parasitic interactions that usually invade the vascular cylinder. 661 

This is remarkable considering that AM fungi are obligate symbionts and need to feed on 662 

photoassimilates during their in planta growth to complete their life cycle. To do that, 663 

AM fungi must first sort out the defense barriers of the host during colonization and then 664 

use carbon resources allocated to the root without provoking a parasitic invasion. 665 

Uncovering the molecular mechanisms of how plant and AM fungi recognize each other 666 



to achieve an almost perfect relationship is the focus of this work (Heck et al., 2016; 667 

Helber et al., 2011; Kloppholz et al., 2011; Tisserant et al., 2013)  668 

Jan Dijksterhuis explained that spores are excellent structures for distribution of 669 

fungi, and are omnipresent in air, water, soil, and on surfaces. Their shape, mode of 670 

formation, dormancy, and stress resistance are highly variable between the species. 671 

Airborne spores encounter different types of stress including those caused by transient 672 

dehydration, UV radiation, and heat. These spores often contaminate and spoil food, and 673 

knowledge of variation in the stress resistance between strains of the same fungal species 674 

is important for risk assessment. The causes of heterogeneity in stress resistance of spores 675 

include age of the colony or the spore and the conditions during spore formation. 676 

Furthermore, such variation occurs even within one colony. His group used the biobank 677 

of the Westerdijk Institute, one of the world’s largest culture collections of fungi, to 678 

select over a hundred strains of the food spoilage fungus Paecilomyces variotii. The 679 

fungal strains were cultivated on a standard malt extract medium, asexual spores (conidia) 680 

were harvested, and the heterogeneity of heat resistance evaluated. The results found that 681 

D60 values (time needed to kill 90% of the spores at a temperature of 60 °C) vary 682 

approximately seven-fold. Some of these strains produce conidia with the highest heat 683 

resistance ever reported for conidia. Other characteristics such as cell size, conidia 684 

formation, and compatible solute levels vary within and between the fungal strains 685 

(Teertstra et al., 2017; van den Brule et al., 2019). 686 

2.7 Stress in fungal pathogenesis 687 

The final topic focused on how stress responses play critical roles in fungal 688 

pathogenesis. In general, whether they are animals or plants, hosts impose stresses on 689 



fungal invaders in an effort to prevent colonization or fight an established infection. 690 

Therefore, to thrive, fungal pathogens must acclimate to, circumvent, and/or detoxify 691 

these host-imposed stresses. At the same time, pathogenic fungi must tune their 692 

metabolism to the available nutrients in their immediate microenvironment. This nutrient 693 

adaptation is tightly linked with stress adaptation, partly because growth control is 694 

intimately linked with stress adaptation, and partly because metabolism provides the 695 

requisite energy for stress adaptation and detoxification mechanisms for some stressors. 696 

These links were illustrated by several speakers who described signaling pathways that 697 

coordinate stress and nutrient responses in evolutionarily divergent fungal pathogens. 698 

Alexander Idnurm  outlined how fungi are subjected to high levels of stress when 699 

exposed to antifungal chemicals, restricting their growth or, in severe cases, killing them. 700 

Fungicides are used widely as therapies against human mycoses and in agriculture against 701 

plant diseases, but a number of molecular mechanisms can alter fungi to confer resistance 702 

to fungicides and therefore reduce the stress (Fisher et al., 2018). A commonly-used class 703 

of fungicide, the azoles, target the ergosterol biosynthesis enzyme Erg11 (also known as 704 

Cyp51). Mutations can occur within the coding region of the gene to change protein 705 

structure. Another system for increasing resistance is to change the promoter region of 706 

erg11. Isolation of azole-resistant mutants of the plant pathogenic fungus Leptosphaeria 707 

maculans was achieved using a screen on plants exposed to fungicides (Van de Wouw et 708 

al., 2017). This revealed a number of potential changes in the genome of the fungus, 709 

including in the erg11 promoter, which are linked to altered responses to agricultural 710 

fungicides. The research extends beyond L. maculans in two ways. First, a current 711 

limitation to testing for the efficacy of antifungal agents is that the assays use growth 712 



under in vitro conditions, which may not reflect what occurs during disease. Second, the 713 

property of large AT-rich DNA regions in the L. maculans genome may contribute to the 714 

evolution of resistance, and such structures are found in many filamentous ascomycete 715 

species (Testa et al., 2016). 716 

Alistair J. P. Brown explained that some fungi have evolved anticipatory 717 

responses that enhance their fitness by protecting them against impending environmental 718 

challenges (Brown et al., 2019; Mitchell et al., 2009). The major fungal pathogen 719 

Candida albicans exploits specific host signals to activate defenses against our innate 720 

immune defenses. Glucose enhances oxidative stress resistance and protects the fungus 721 

against phagocytic killing (Rodaki et al., 2009). Meanwhile, lactate and hypoxia trigger 722 

the masking of β-glucan (a major pathogen-associated molecular pattern at the fungal cell 723 

surface), thereby reducing phagocytic recognition and engulfment (Ballou et al., 2016; 724 

Pradhan et al., 2018). Therefore, as C. albicans adapts to the nutrients and stresses in host 725 

niches, the fungus triggers anticipatory responses that promote immune evasion as well as 726 

its fitness in vivo (Brown et al., 2019).  727 

Alexandra C. Brand discussed how opportunistic fungal pathogens generally 728 

rely on mechanisms that otherwise underpin normal cell homeostasis to persist and cause 729 

disease in immune-deficient patient groups. Calcium-calmodulin signaling, which acts 730 

via calcineurin and its transcription factor, Crz1, is one such pathway (Brand et al., 2007; 731 

Chen et al., 2014; Karababa et al., 2006; Kraus and Heitman, 2003; Pianalto et al., 2019). 732 

Laboratory methods for studying stress responses employ commonly-used compounds, 733 

including hydrogen peroxide, NaCl, and the surfactant sodium dodecyl sulfate (SDS), to 734 

generate oxidative, osmotic, and membrane stress, respectively. To understand the link 735 



between cell stress and calcium-flux, Brand’s group has adapted a genetically-encoded, 736 

intracellular calcium reporter in C. albicans and tested its output in the presence of 737 

compounds that induce well-characterized cell responses. A key finding was that each 738 

stress condition induced a unique calcium-flux response and recovery signature, which 739 

distinguish between short and longer-term stress adaptation mechanisms.  This new work 740 

paves the way for a better understanding of calcium flux and its interaction with stress 741 

signaling pathways in C. albicans. 742 

Koon Ho Wong studies the opportunistic fungal pathogen Candida glabrata 743 

(Fidel et al., 1999), which can survive and multiply inside macrophage (Kaur et al., 2007; 744 

Otto and Howard, 1976; Roetzer et al., 2010; Seider et al., 2011) This ability is essential 745 

for its virulence. Details on the immediate C. glabrata response to macrophage 746 

phagocytosis and how it survives and multiplies within macrophage are not well 747 

understood. He presented a systematic analysis on genome-wide transcription changes of 748 

C. glabrata in high temporal resolution upon macrophage phagocytosis and the 749 

regulatory mechanisms underlying specific transcription responses to macrophage. 750 

Elis C. A. Eleutherio examined the use of S. cerevisiae to investigate the 751 

molecular mechanisms of human diseases. A considerable number of yeast and human 752 

genes perform the same roles in both organisms, meaning that the expression of a human 753 

gene can be replaced for that of the yeast. One of those conserved genes is SOD1, which 754 

codes for Cu, Zn superoxide dismutase. Around 20% of familial Amyotrophic Lateral 755 

Sclerosis (fALS) cases are attributed to heterozygotic mutations in the SOD1 gene. 756 

Consequently, the S. cerevisiae cell has long served as an effective research model for 757 

studies of oxidative stress response. Exponential-phase glucose-grow yeast cells only 758 



ferment and, consequently, show low levels of reactive oxygen species (ROS), which 759 

increase in chronologically-aged cells. This study sheds light into the effects of fALS 760 

Sod1 mutations on inclusion formation, dynamics, and antioxidant response, opening 761 

novel avenues for investigating the role of fALS Sod1 mutations in pathogenesis. 762 

Renata C. Pascon emphasized that fungal infections can be life threatening and 763 

difficult to treat. Only a few antifungal options exist for treatment. Cryptococosis is one 764 

of these invasive fungal infections caused by C. neoformans, a fungal pathogen of clinical 765 

importance and used as a biological model for virulence and pathogenesis studies. Her 766 

research is about the regulatory circuit that governs sulfate uptake and sulfur amino acid 767 

biosynthesis aiming to identify a novel target for antifungal development. Pascon’s group 768 

deleted a major transcription factor (Cys3) that governs sulfur amino acid biosynthesis 769 

and found it to be essential for virulence (Calvete et al., 2019; de Melo et al., 2019; 770 

Fernandes et al., 2015; Martho et al., 2019; Martho et al., 2016). 771 

Claudia B. L. Campos was the final speaker at the Symposium. She works with 772 

Paracoccidioides spp., which are the agents of paracoccidioidomycosis, a systemic 773 

mycosis found in Brazil and other South American countries. Calcineurin, a Ca2+-774 

calmodulin-dependent phosphatase, regulates processes related to cell dimorphism and 775 

proliferation in Paracoccidioides brasiliensis through a yet unknown mechanism. 776 

Campos’ group found that calcineurin inhibition in yeast cells induces enlargement of 777 

lipid bodies, which prevents cells from uptaking or oxidizing glucose. The proteomic 778 

profile of yeast cells revealed that inhibition of calcineurin for 24 h leads to an overall 779 

reprograming of the metabolism, with an increase in protein degradation while protein 780 

synthesis is resting, alteration in beta-oxidation, and synthesis of lipids, an apparent 781 



stimulation of gluconeogenesis and glyoxylate cycle, followed by an extensive change in 782 

mitochondrial function. Their work aims to understand how calcineurin regulates 783 

fundamental process that are behind its role on cell fittingness to environmental changes 784 

in Paracoccidioides spp. (Matos et al., 2013; Ribeiro et al., 2018). 785 

3 Awards 786 

3.1 Elsevier student awards 787 

To apply for the Elsevier awards at ISFUS 2019, students had to submit a 788 

manuscript about their research. Two students were selected based on their articles, 789 

receiving certificates in the categories: Silver (US $ 300) and Bronze (US $ 200). The 790 

Silver Award was given to Vitor Martins de Andrade, a PhD student advised by Katia 791 

Conceição from the Universidade Federal de São Paulo in São José dos Campos, SP, 792 

Brazil. Vitor was selected based on his manuscript “Antifungal and anti-biofilm activity 793 

of designed derivatives from Kyotorphin” (Martins de Andrade et al., 2019). The Bronze 794 

Award was given to Brigida de Almeida Amorim Spagnol for her work titled “Maturity 795 

favors longevity and downregulation of aging genes in Saccharomyces cerevisiae 796 

submitted to high hydrostatic pressure” (Spagnol et al., 2019). Brigida is doing her PhD 797 

with Patricia M.B. Fernandes at the Universidade Federal do Espírito Santo, Vitória, ES, 798 

Brazil (Figure 6). 799 

3.2 Journal of Fungi student award 800 

The winner of the Journal of Fungi Award for the best poster was Marlene 801 

Henríquez Urrutia from Pontificia Universidad Católica de Chile, Santiago, Chile. She is 802 

a PhD student of Dr. Luis Larrondo and presented a poster titled “Circadian regulation of 803 



a mycoparasitic interaction between Botrytis cinerea and Trichoderma atroviride” 804 

(Figure 7). 805 

3.3 Award to Drauzio Eduardo Naretto Rangel 806 

At the closing ceremony of ISFUS-2019, and on behalf of the Organizing 807 

Committee, John E. Hallsworth and Luis M. Corrochano gave an overview of the ISFUS 808 

series. These meetings have been convivial gatherings, bringing together international 809 

and Brazilian scientists for a shared scientific (as well as cultural and social) experience. 810 

Thus far, there have been 81 ISFUS speakers, coming from 24 countries. Hallsworth 811 

highlighted the world-leading mycological research endeavors of Brazilian science in 812 

relation to entomopathogens (biological control), biodiversity, trehalose metabolism, UV 813 

stress, and bioethanol by explaining how important it is for international delegates to 814 

interact with Brazilian students, academics, and industry. He detailed how the ISFUS 815 

special issues of 2015 (Current Genetics) and 2018 (Fungal Biology) have been 816 

successful. For example, ISFUS special-issue papers make up 9 out of 10 most-cited 817 

papers in Current Genetics for 2015, and all 10 of the most-cited papers in Fungal 818 

Biology for 2018 (Web of Science, on 20 May 2019). ISFUS has also generated new 819 

collaborations between participants, new funding streams, and new lines of scientific 820 

inquiry, joint publications, and exchange of students between participants to support joint 821 

research projects. This exemplifies how the fungal stress meetings can generate impacts 822 

beyond the immediate field. Furthermore, these impacts can be as varied as they are 823 

indeterminate. Hallsworth also explained that each ISFUS appears to be even more 824 

convivial and scientifically stimulating than the last.  825 

Drauzio E. N. Rangel, he went on to say, has acted as an ambassador for Brazil, 826 



and for Brazilian mycology, through the ISFUS series of symposia. Rangel also has his 827 

own innovative way of doing science, is scholastic in his research style, is highly 828 

collaborative, and has a series of unique research outputs that also stimulate new lines of 829 

experimentation in other research groups. Hallsworth stated that Rangel has made a 830 

consistent, unique, and profound contribution to field of fungal stress. On behalf of the 831 

Committee, Corrochano and Hallsworth then surprised Rangel by presenting him with an 832 

award, in the form of a glass globe, inscribed with the words: “Awarded for Outstanding 833 

Contribution to Mycology to Professor Drauzio E. N. Rangel at III International 834 

Symposium on Fungal Stress & conferred by the Organizing Committee, May 2019, (São 835 

José dos Campos, SP, Brazil).” Rangel responded to the award with gratitude and tears 836 

(Figure 8). 837 

4 Excursion  838 

The weekend after ISFUS-2019 most of the speakers traveled to São Sebastião for 839 

a scientific retreat at the beach. On Saturday, they partook of a traditional Brazilian 840 

barbeque on a chartered boat. This was an exquisite opportunity for the participants to 841 

become better acquainted with each other, form new collaborations and friendships while 842 

thoroughly enjoying another aspect of Brazilian hospitality (Figure 9). 843 

 844 

5 The next ISFUS in 2021 845 

Rangel already began planning the fourth ISFUS, even before the third ISFUS 846 

was completed and eleven speakers have already confirmed their presence 847 

https://isfus2021.wordpress.com/. During ISFUS-2019, Jesús Aguirre proposed a join 848 



meeting combining ISFUS-2021 with the International Fungal Biology Conference 849 

(IFBC). This international conference began in 1965 and has taken place in several 850 

different countries: UK 1965, USA 1973, Switzerland 1980, UK 1987, USA 1991, 851 

Germany 1996, The Netherlands 1999, Mexico 2002, France 2006, Mexico 2009, 852 

Germany 2013, and South Korea 2017, but this will be the first edition in South America. 853 

Therefore, we cordially invite you to São José dos Campos, Brazil, for the IV ISFUS and 854 

XIII IFBC in June of 2021. We are confident that a joint ISFUS-IFBC meeting will bring 855 

together complementary and exciting cutting-edge fields of fungal biology that should be 856 

attractive to many researchers young and old, from all over the world. 857 

 858 

6 Conclusions 859 

The presentations at ISFUS-2019, which covered approximately 30 fungal species, 860 

collectively highlight the diversity of responses that fungi can trigger to protect 861 

themselves. What general themes emerged? The first was the challenge in providing a 862 

clear definition of what stress would mean to a species. The second was the extensive use 863 

of genomic-level methods to analyze the impact of stress on fungi. The third was how 864 

fungi relate to time, and fourth about interactions with the lithosphere. Fifth, novel 865 

stresses and stress responses were identified. Finally, it is clear that there is substantially 866 

more to uncover about how fungi sense and respond to stress in their environment. 867 
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FIGURE LEGENDS 1573 
 1574 

 1575 
Figure 1. Speakers of the third ISFUS in 2019 held in São José dos Campos, SP, Brazil. 1576 
Front row from left to right: Drauzio E. N. Rangel, Amanda E. A. Rangel, Alene Alder-1577 
Rangel. Second row from left to right: Thiago Olitta Basso (Brazil), Graeme M. Walker 1578 
(UK), David E. Levin (USA), Gilberto U.L. Braga (Brazil), Irina Druzhinina 1579 
(Russia/China), Julia Schumacher (Germany), Rocco L. Mancinelli (USA), Anna 1580 
Gorbushina (Russia/Germany), Natalia Requena (Spain/Germany), Laura Selbmann 1581 
(Italy), and Luis Corrochano (Spain). Third row from left to right: Alexander Idnurm 1582 
(Australia), Jesús Aguirre (Mexico), Gustavo H. Goldman (Brazil), Chris Koon Ho Wong 1583 
(Macau), Claudia B. L. Campos (Brazil), Oded Yarden (Israel), Martin Kupiec (Israel), 1584 
Deborah Bell-Pedersen (USA), Christina M. Kelliher (USA), Michelle Momany (USA), 1585 
Alexandra C. Brand (UK), and Jan Dijksterhuis (The Netherlands). Fourth row from left 1586 
to right: Tamás Emri (Hungary), Ekaterina Dadachova (Russia/Canada), István Pócsi 1587 
(Hungary), Alistair J. P. Brown (UK), Geoffrey M. Gadd (UK), Reinhard Fischer 1588 
(Germany), Luis Larrondo (Chile), Guilherme T. P. Brancini (Brazil), Gerhard Braus 1589 
(Germany), Florian F. Bauer (South Africa), Mikael Molin (Sweden), Radamés J.B. 1590 
Cordero (USA), and John E. Hallsworth (UK). 1591 
 1592 
Figure 2. Meet the speakers banner. This banner was printed on a poster and placed in the 1593 
auditorium so everyone could remember their preferred speaker’s names for future 1594 
scientific discussion. Below the speakers’ pictures are the logos of the grant agencies and 1595 
sponsors. 1596 
 1597 
 1598 
Figure 3. Logo of the third International Symposium on Fungal Stress (ISFUS-2019). 1599 
This figure illustrates some of the stress parameters that fungi are subjected to such as 1600 
ionizing radiation, acidic and alkaline environments, hypoxic or anoxic conditions, 1601 
poisons in general such as genotoxic and oxidative products, UV radiation from the sun, 1602 
pollution from industry and agriculture, salt stress, nutritive stress, and heat from solar 1603 
radiation and other sources. 1604 
 1605 
Figure 4. Speakers at the Vicentina Aranha Park, São José dos Campos, SP, Brazil. 1606 
 1607 
Figure 5. Speakers and participants holding hands and sharing their happy moments. 1608 
 1609 
Figure 6. Elsevier Student Awards. From left to right: Alene Alder-Rangel, Vitor Martins 1610 
de Andrade, Brigida de Almeida Amorim Spagnol, and Drauzio E. N. Rangel 1611 
 1612 



Figure 7. Journal of Fungi Student Award. From left to right: Alene Alder-Rangel, 1613 
Drauzio E. N. Rangel, Marlene Henríquez Urrutia, and Luis Larrondo 1614 
 1615 
Figure 8. Award given to Drauzio E. N. Rangel during the closing ceremony of the III 1616 
International Symposium on Fungal Stress. A) Drauzio E. N. Rangel, John Hallsworth, 1617 
and Luis Corrochano. B) Drauzio E. N. Rangel, Alene Alder-Rangel, and Luis 1618 
Corrochano. C) Glass globe inscribed with the words: “Awarded for Outstanding 1619 
Contribution to Mycology to Professor Drauzio E. N. Rangel at III International 1620 
Symposium on Fungal Stress & conferred by the Organizing Committee, May 2019, (São 1621 
José dos Campos, SP, Brazil)”. 1622 
 1623 
Figure 9. Participants and speakers of the III ISFUS in the excursion to the beach in São 1624 
Sebastião, São Paulo, Brazil: A) outside the excursion bus and B) on the boat.  1625 
 1626 
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