172 research outputs found

    Learning From Real Springs

    Get PDF
    Many springs do not obey Hooke's Law because they are constructed to have an intrinsic tension which must be overcome before normal elongation occurs. This property, well-known to engineers, is universally neglected in elementary physics courses. In fact it can be used to enhance learning and to deepen understanding of potential energy

    On a theoretical model for d-wave to mixed s- and d-wave transition in cuprate superconductors

    Full text link
    A U(3) model proposed by Iachello for superconductivity in cuprate materials is analyzed. The model consists of s and d pairs (approximated as bosons) in a two-dimensional Fermi system with a surface. The transition occurs between a phase in which the system is a condensate of one of the bosons, and a phase which is a mixture of two types of bosons. In the current work we have investigated the validity of the Bogoliubov approximation, and we used a reduced Hamiltonian to determine a phase diagram, the symmetry of the phases and the temperature dependence of the heat capacity.Comment: 8 pages, 4 figure

    Beyond mean-field description of the low-lying spectrum of 16O

    Full text link
    Starting from constrained Skyrme-mean-field calculations, the low-energy excitation spectrum of 16O is calculated by configuration mixing of particle-number and angular-momentum projected mean-field states in the framework of the Generator Coordinate Method. Without any adjustable parameters, this approach gives a very good description of those states and their transition moments that can be described with our restriction to axially and reflection-symmetric shapes. The structure of low-lying 0+ states is analyzed in terms of self-consistent 0p-0h, 2p-2h, and 4p-4h Hartree-Fock states.Comment: 15 pages LATEX, 6 figures, 3 tables, revision of sections 4 and

    Augmented Lagrangian Method for Constrained Nuclear Density Functional Theory

    Get PDF
    The augmented Lagrangiam method (ALM), widely used in quantum chemistry constrained optimization problems, is applied in the context of the nuclear Density Functional Theory (DFT) in the self-consistent constrained Skyrme Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of multidimensional energy surfaces in the space of collective coordinates that are needed to, e.g., determine fission pathways and saddle points; it improves accuracy of computed derivatives with respect to collective variables that are used to determine collective inertia; and is well adapted to supercomputer applications.Comment: 6 pages, 3 figures; to appear in Eur. Phys. J.

    Weakly-Interacting Bosons in a Trap within Approximate Second Quantization Approach

    Full text link
    The theory of Bogoliubov is generalized for the case of a weakly-interacting Bose-gas in harmonic trap. A set of nonlinear matrix equations is obtained to make the diagonalization of Hamiltonian possible. Its perturbative solution is used for the calculation of the energy and the condensate fraction of the model system to show the applicability of the method.Comment: 6 pages, two figures .Presented at the International Symposium on Quantum Fluids and Solids QFS2006 (Kyoto, Japan

    Coexistence of the "bogolons" and the one-particle spectrum of excitations with a gap in the degenerated Bose gas

    Full text link
    Properties of the weakly non-ideal Bose gas are considered without suggestion on C-number representation of the creation and annihilation operators with zero momentum. The "density-density" correlation function and the one-particle Green function of the degenerated Bose gas are calculated on the basis of the self-consistent Hartree-Fock approximation. It is shown that the spectrum of the one-particle excitations possesses a gap whose value is connected with the density of particles in the "condensate". At the same time, the pole in the "density-density" Green function determines the phonon-roton spectrum of excitations which exactly coincides with one discovered by Bogolyubov for the collective excitations (the "bogolons").Comment: 8 pages, no figure

    Bound-State Representation of Scattering Solutions

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org

    Charge- and parity-projected Hartree-Fock method for the strong tensor correlation and its application to the alpha particle

    Full text link
    We propose a new mean-field-type framework which can treat the strong correlation induced by the tensor force. To treat the tensor correlation we break the charge and parity symmetries of a single-particle state and restore these symmetries of the total system by the projection method. We perform the charge and parity projections before variation and obtain a Hartree-Fock-like equation, which is solved self-consistently. We apply the Hartree-Fock-like equation to the alpha particle and find that by breaking the parity and charge symmetries, the correlation induced by the tensor force is obtained in the projected mean-field framework. We emphasize that the projection before the variation is important to pick up the tensor correlation in the present framework.Comment: 21 pages, 2 figure

    Totally Microscopic Description of N-O-16 Elastic-Scattering

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org
    • …
    corecore