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Bound state representation of scattering solutions
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Approximate positive energy continuum eigenstates of a one-body Hamiltonian, al.ready
projected onto a finite dimensional. harmonic oscil. l.ator basis, are constructed from the set
of discrete-energy states obtained by diagonalizing the Hamiltonian. The method shoul. d be
especial. ly useful for calculating the virtual, continuum, intermediate states in many-
particle calculations. The results for the test cases considered, the square well and the
nonlocal. Hartree-Fock potentials, are quite accurate both in the wave functions and the
phase shifts.

I. INTRODUCTION

One of the more fruitful methods used in trying
to solve the nuclear many-body problem has as its
starting point the solution of the Hartree-Fock
equations in a truncated, harmonic oscillator ba-
sis. ' If the nucleus under consideration has A par-
ticles and the basis consists of N states, one gen-
erates, by this method, N-4 "unoccupied" eigen-
functions as well as the filled states. The Hartree-
Fock (HF) representation thus obtained is in many
cases the most convenient one for subsequent cal-
culations. For example, in applying the random
phase approximation method to describe excited
st;ates, the use of the HF states circumvents the
usual difficulty with the elimination of spurious
states. ' These states are, in this case, not mixed
with the real excited states and have zero excita-
tion energy. Also, when carrying out a perturba-
tion expansion the HF representation leads to a
great simplification; namely, that the one particle-
one hole states are not connected by the Hamilto-
nian to the unperturbed ground state.

Because all such nuclear calculations ultimately
involve the calculation of two-body matrix ele-
ments, the harmonic oscillator basis is particular-
ly convenient since the decomposition of two states
into relative and center-of-mass states, i.e., the
Talmi or Brody-Moshinsky transformation, ' con-
sists of a limited number of terms. Sophisticated
and efficient computer programs enable one to cal-
culate extremely large numbers of two-body, har-
monic oscillator matrix elements and render large
HF calculations, even of superheavy nuclei, and
subsequent perturbation calculations quite feasible.

Thus, since the results of large HF calculations
are available and because of the consequent sim-
plicity of calculation, it was desirable to develop
a procedure for expressing scattering states in
terms of HF states given in a harmonic oscillator
basis. The quite complicated expressions occur-

ring in perturbative scattering schemes, where
complete sets of scattering wave functions are in-
troduced as intermediate states, would then be
calculable using essentially the same method em-
ployed for the bound states. Such a procedure is
described in the next section. Of course, for the
procedure to be ultimately useful it is necessary to
demonstrate that only a fe~ harmonic oscillator
states are needed to accurately describe the scat-
tering wave functioninside the potential region. In
Sec. III the method is tested for two exactly soluble
models and it is shown that this is the case.

It should be emphasized that the method is simi-
lar in spirit to the B-matrix approach' and the
method of Heller and Yamani. ' It differs from the
R-matrix procedures in that it gives the scattering
solution over the range of interest and not just the
phase shifts. Furthermore, and of crucial impor-
tance, the required calculations are straightfor-
ward and not time consuming, even for nonlocal
potentials.

Finally, it should be noted that the method is ap-
plicable whenever one can diagonalize a one-body
Hamiltonian in a harmonic oscillator basis. The
method is described in terms of HF results be-
cause of the subsequent application, but may be
used with other single-particle model results,
such as Nilsson calculations.

II. METHOD

When solving the HF equations in a truncated,
harmonic oscillator basis, one diagonalizes the
matrix

h, , =t, , + , ,u=-(i
I t+uI j),

where u is the HF potential defined by

(iIuIj&= Q (a~
I v„Ij~&. (2)

Here
I i) and I j & a,re harmonic oscillator states

and the IA. ) are the occupied HF orbitals which are
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expanded in terms of
I
i&:

Iz& =g c,'Iz&.

represented in it, i.e.,

VA is the antisymmetrized two-body interaction.
At present only spherical nuclei shall be considered
so that

I
A. & is an eigenstate of orbital and total an-

gular momentum and isospin. The HF equation is
then

Q h„„C„=e),C„,
n'

where n and n' are principal quantum numbers and
one has a separate matrix for each l and j.

In order to emphasize that a truncated basis is
being used, projection operators may be defined by

P=P lf&(el,

P+Q=l,
and the HF equation takes the form

PAP
I p& =&p

I g&,

where the N HF states p, are, of course, in the P
space.

It is apparent from Eq. (6) that this diagonaliza-
tion method will never yield, directly, correct
scattering (positive e) solutions. Although the po-
tential term may be well represented by PuP, the
kinetic energy operator has matrix elements which
increase with principal quantum number n. It is
this part of h which is nonzero at infinity and will
give rise to the continuum. Thus the correct equa-
tion for the scattering states must include the en-
tire space

(P+Q)@(P+Q) I C.&
= .I I.&

The boundary condition is such that in the coordi-
nate representation the radial part of g~(r) is given
asymptotically by

(10)

& J IPfQ I C.&
= g &vlf I f&& f.

l v, &

2 =8+1

v « I
t le+»&n+ 1

I ea&
Vl a =Cq

Cg —Cp
(12)

At this point the second assumption is introduced.
One wl ltes

= g IJ && ~ I 4.& + Q I (&&

The validity of this assumption obviously cannot
be established mathematically as it is trivial to
construct nonlocal potentials for which PuQ is not
negligibly small no matter how large a basis is
used. However, for the physical systems of inter-
est it is reasonable that, due to the smooth and
slowly varying nature of u, Eq. (10) will be well
satisfied. Alternatively, one may adopt the ap-
proach that the matrix elements of u which are
available from HF-type calculations in oscillator
space will always be in a truncated basis and there
is little choice but to assume that those out of the
space are zero. '

One now uses the well-known property of the ma-
trix elements of the kinetic energy between har-
monic oscillator states, namely that all quantum
numbers except n must be the same and the princi-
pal quantum numbers can differ by at most unity in
order for the matrix element to be nonzero. Then
assuming, for notational simplicity, that there are
q basis states for each t and j in the P space, one
obtains for the left side of Eq. (9)

R„(r) j,(kr) —-tanO, n, (kr)

for any particular l value.
One may now, in the standard way, combine Eqs.

(6) and (7) by multiplying the former by (g» I
and

the latter by ( p, I
. Subtraction then yields

and assumes that within the range of the potential
Q I g~& is negligible relative to P

I g, &. Such an as-
sumption is reasonable if k is not so large that the
number of nodes inside the potential is comparable
to g. One then obtains, in this region,

if u, which may be nonlocal or complex, is at
least symmetric. The first real assumption in the
method is now introduced. It will be assumed that
the basis is sufficiently large so that u may be well

where

a "„„=(q+1 I q„&

is a normalization constant.
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For Hermitian potentials,
~ g„) should be orthog-

onal to the bound state wave functions. This im-
plies that C~ should be zero for these states. In
practice, for reasonable values of g, the contribu-
tion to

~ P~) from the bound states was negligible.
Although the wave function thus obtained is de-

termined only within a multiplicative constant,

one may still calculate the corresponding phase
shift from it. Using the well-known expression

(16)

which is linear in the scattering solution, one may,
using the Schrodinger equation, obtain the

expres sion'
oo 2

—tan5, 3, j,(kr)u(r}R, , (r)r'dr
k f"R~, '(r)u(r)r'dr j-J' R„,(r')u(r') g~, (r', r)R»(r)u(r)r'dr r"dr' '

0 0

which is independent of the normalization. Here
R», is the radial part of ( r

~ g„) for a particular
E and

kj, (kr')n, (kr), r'(r;
A, ir~r =

kj, (kr)n, (kr'), r'& r.
(18)

within the range of the potential. As a result one
may determine the scattering wave functions and
the phase shifts extremely rapidly once the origi-
nal matrix diagonalization has been affected.

The validity of the assumptions and the depen-
dence on the size of the basis will be studied in
the next section.

This formula has a variational property and will
yield phase shifts more accurate than the approxi-
mate wave functions R». Obviously one need only
know the wave function within the potential region
to utilize this method. The normalization constant
can then be determined by using Eq. (16).

In summary, two assumptions are made:

Pug =0

these two calculations are compared in Table I.
As is apparent from the table, the exact phase
shifts are reproduced to within a fraction of a de-
gree except at the lowest scattering energy. The
results are for s-wave scattering and are typical
of all partial waves considered. The corresponding
wave functions are shown, for two energies, in
Figs. 1 and 2. The accuracy of the method is well
beyond what would be required in many-body calcu-
lations where the wave functions always enter into
integrals restricted to the domain of the potential.
The agreement strongly indicates that the assump-
tions involved in obtaining Eq. (14) are valid.

Because Hartree-Fock results in a larger basis
were not available, the sensitivity to the size of
the basis was tested as follows. A 10x10 "Har-
tree-Fock" matrix was constructed using the 6&&6

potential and the matrix elements of the kinetic en-
ergy. Diagonalization then produced 10 eigenfunc-
tions and eigenvalues which were used to generate
approximate scattering solutions. The phase shifts
thus obtained are also listed in Table I. Obviously
a 6&&6 space is sufficiently large for this potentiaL
at the energies considered.

The method was also applied to a 3&3 Hartree-
Fock potential' for "0with similar agreement. In

III. APPLICATION: HARTREE-POCK POTENTIAL

As a first test of the method the Hartree-Fock
potential for "O, in a harmonic oscillator basis,
was considered. The basis contained six s states
with y =k/me& =8.7 fm'. The Tabakin two body-in-
teraction' was used in the HF calculation. The ex-
act solution was obtained by transforming the 6x6
potential into coordinate space and solving the
Schrodinger equation with the resulting nonlocal
potential using standard procedures.

The approximate scattering solutions were ob-
tained as follows. The Hartree-Fock eigenfunc-
tions and ei.genvalues were used to obtain unnor-
malized scattering wave functions, Eq. (14), and
the phase shifts and normalization were then de-
termined via Eqs. (1'7) and (16). The results of

E {MeV) 6 {exact) {6x6) 4 {10x10)

5
10
15
20
25
30
35
40

50

1.0240
-27.0609
-44.3904
-58.7131
—72.9702
—86.6877

81.1252
71.0551
63.4058
58.4475

-0.6197
-27.1334
-44.9788
-58.7847
—72.8062
-86.7768

80.8253
70,7834
63.2782
58.4147

-0.6200
-27.1333
-44.9788
-58.7846
-72.8064
—86.7768

80.8253
70.7834
63.2783
58.4147

TABLE I. Hartree-Fock potential. The phase shifts
for s-wave scattering from the Hartree-Fock potential
for ~~O, as calculated in two different sized bases, are
compared with the exact results.
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FIG. 3. S-wave scattering. The exact and approximate
phase shifts are compared. Here a 10x10 space was
utilized with y = 2.6 fm2. (The phase shifts are modulo
2m .)
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that case the lar gest difference between the exact
phase shifts and those calculated using a 10x10
space, from 5 to 50 MeV, was 0.1'.
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FIG. 1. Comparison of wave functions. The approxi-
mate wave function (dotted) is compared to the exact
solution for 8-wave scattering from the nonlocal
Hartree-Fock potential at 10 MeV.

IV. APPLICATION: SQUARE WELL

As a final test of the method the three-dimen-
sional square well was considered. This well was
chosen both for simplicity and in an effort to make
the test a severe one. Both the locality and the
discontinuity in the well make it less amenable to
this method than the HF potentials generated by
smooth, two-body interactions.

The particular square well chosen had a depth of
60 MeV and a radius of 2.9 fm. Such a well pro-
duces reasonable "single-particle energies" for
the negative energy solutions if one is considering
"O.' The scattering solutions and the expression

0.5

o 0
0

-0.5 -10—

I I I

P-Wave Phase Shifts

Exact

Calculated (x=103

Calculated (%=63

—I.O -50—

-70—

-20—

I l 1 I

FIG. 2. Comparison of wave functions. The approxi-
mate wave function (dotted) is compared to the exact
solution for S-wave scattering from the nonlocal.
Hartree-Fock potential at 50 MeV.
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I I I I I I I I I

0 IO 20 50 40 50 60 70 80 90 100
E(Mev)

FIG. 4, Effect of truncation. The exact P-wave
phase shifts are compared with the approximate solu-
tions obtained in 10x 10 and 6x 6 spaces. The large
deviations in the smaller space reflect the absence of
eigenstates with large energies.
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FIG. 5, Dependence on y. The exact D-wave phase
shifts are compared with the approximate solutions, in
the 10' 10 space, obtained using different harmonic
oscillator constants.

for the phase shift are to be found in every quantum
mechanics textbook. ' The approximate solutions
were obtained by diagonalizing this Hamiltonian in
an harmonic oscillator basis containing q s states,
g P states, and q d states, with g taking on various
values with a maximum of 10. Although for this
simple case much larger values of q could have

been easily used, such tests of the method would
be irrelevant because of the limited bases used for
bound state calculations.

The resulting phase shifts are compared to the
exact results in Figs. 3-5. The first figure shows
this comparison for s-wave scattering using a
10x10 space. Although the approximation works
quite well, the errors here are quite a bit larger
than for the Hartree-Fock potential. The reason
for this, besides the pathological nature of the po-
tential, is that one is now not using the same po-
tential for the exact and approximate solutions. In
contrast to the Hartree-Fock case, the potential
used for the exact solution was not the coordinate
space representation of the 10x10 potential, but
the actual square well. Thus one is testing, as
well as the method, the degree to which this poten-
tial can be represented in the truncated space. In
fact, in the truncated space the potential will be
nonlocal and this nonlocality was found to be signi-
ficant relative to the local part. This renders the
agreement shown in the figures more impressive.

In Fig. 4 the exact and approximate solutions are
compared for P-wave scattering. Included in this
figure are the results for a 6&&6 space calculation.
The agreement is again very good although the ef-
fects of the truncation become pronounced at higher
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CALCUL ATE D

Square Well
50 MeV

1.0
I.O

0.5

0 0
'JC

CL
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FIG. 6. Comparison of wave functions. The approxi-
mate wave function (dotted) is compared to the exact
solution for S-wave scattering from a, square well
potential at 10 MeV. The arrow indicates the range of
the potential.

I I

FIG, 7. Comparison of wave functions. The approxi-
mate wave function (dotted) is compared to the exact
solution for 8-wave scattering from a square well.
potential at 50 MeV,



TABLE II. Square-well potential. The phase shifts
calculated variationally, 6 (calc), are compared with the
exact phase shifts for a square well. The phase shifts
labeled 6 (fit) are obtained by matching the unnormalized
approximate solution to the exact asymptotic form outside
the range of the potential.

E (MeV) 5 (calc) 0 (exact)

5
10
15
20
25
30
35
40

50

66.9
30.7
13.9
0.0

—20.7
—31.3
-39.6
—48.8
—58.1
—65.1

66.7
36.5
15.3
—1.6

—15.8
-28.0
-38.5
—47.7
—55.6
—62.3

66.5
38.0
16.5
—1.1

—15.7
—28.1
-38.7
—47.9
-55.6
-61.6

V. ALTERNATIVE METHOD

Instead of carrying out the procedure described
above one may, starting from the unnormalized ap-
proximate scattering states, utilize the known

energies. This is reasonable since it is the states
mith the larger eigenvalues which should dominate
at higher energies and the energy range spanned
by the 6 x 6 space is of course, smaller than for
the 10&& 10 space. This observation provides a use-
ful criterion for determining the size of the space
based on the scattering energies desired.

In Fig. 5 the exact and approximate solutions are
compared for d-wave scattering. Included are the
approximate results for two quite different values
of the harmonic oscillator parameter y. In the
Hartree-Fock ea.se y mas determined in the vari-
ational calculation so that the dependence on y was
irrelevant. Here there is no unambiguous crite-
rion for determining y so the weak dependence on
it is gratifying.

The wave functions for S-wave scattering at two
energies, with y =3."II fm', are shown in Figs. 6
and 7. It should be noted that in most applications
the wave functions would be multiplied by the po-
tential which, in this case, is zero beyond 2.9 fm.
It can be observed that there are no systematic
discrepancies in these results due to the replace-
ment of a local potential by a nonlocal one."

asymptotic form of the solution to determine scat-
tering states. Assuming there is a region outside
the potential for which Eq. (14) is valid, the nor-
malization and the phase shift can be determined
by requiring that they minimize the difference be-
tween the exact, asymptotic form [Eq. (8)] and the
approximate solution. (Note that the last assump-
tion is not required in applying the previous meth-
od. )

This two parameter search procedure" is appli-
cable to the square well considered above because
there is a well-defined region, in which the poten-
tial is zero, which is close enough to the origin for
Eq. (14) to be valid. The results, obtained by min-
imizing the difference between the solutions in a
region of width 1.5 fm starting from the edge of the
well, are shown in Table II. As can be seen from
the table, the 5(fit), obtained in this way, are
somewhat more accurate than the 5(calc) obtained
using Eq. (17). The computer time necessary for
the two methods is comparable.

This alternative method is not relevant for the
Hartree-Fock potential. There one must go beyond
the range of validity of Eq. (14) before reaching a.

region in which the exact solution has taken on its
asymptotic form. The alternative should, however,
be considered when sharply cut-off, short-ranged
potentials are being investigated.

VI. CONCLUSIONS

A method has been proposed for expressing scat-
tering solutions in terms of the eigenfunctions of
a one-body Hamiltonian in a truncated harmonic
oscillator basis. It ha, s been demonstrated that
even for a local, rather pathological potential the
method reproduces the exact phase shifts and wave
functions mell. Furthermore, it has been shown
that for the smooth, nonlocal Hartree-Fock poten-
tial, the method works extremely well. Because
of the speed of the calculations the method is well
suited for application in complex problems which
require the one-body continuum for the construc-
tion of few-particle intermediate states. For ex-
ample, the method provides a convenient may of
representing the continuum states arising in the
second order correction to the HF nucleon-nucleus
optical potential, thus avoiding the plane-wave ap-
proxlmatlon.
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