104 research outputs found

    COVARIATE-ADJUSTED NONPARAMETRIC ANALYSIS OF MAGNETIC RESONANCE IMAGES USING MARKOV CHAIN MONTE CARLO

    Get PDF
    Permutation tests are useful for drawing inferences from imaging data because of their flexibility and ability to capture features of the brain that are difficult to capture parametrically. However, most implementations of permutation tests ignore important confounding covariates. To employ covariate control in a nonparametric setting we have developed a Markov chain Monte Carlo (MCMC) algorithm for conditional permutation testing using propensity scores. We present the first use of this methodology for imaging data. Our MCMC algorithm is an extension of algorithms developed to approximate exact conditional probabilities in contingency tables, logit, and log-linear models. An application of our non-parametric method to remove potential bias due to the observed covariates is presented

    A BAYESIAN HIERARCHICAL FRAMEWORK FOR SPATIAL MODELING OF fMRI DATA

    Get PDF
    Functional neuroimaging techniques enable investigations into the neural basis of human cognition, emotions, and behaviors. In practice, applications of functional magnetic resonance imaging (fMRI) have provided novel insights into the neuropathophysiology of major psychiatric,neurological, and substance abuse disorders, as well as into the neural responses to their treatments. Modern activation studies often compare localized task-induced changes in brain activity between experimental groups. One may also extend voxel-level analyses by simultaneously considering the ensemble of voxels constituting an anatomically defined region of interest (ROI) or by considering means or quantiles of the ROI. In this work we present a Bayesian extension of voxel-level analyses that offers several notable benefits. First, it combines whole-brain voxel-by-voxel modeling and ROI analyses within a unified framework. Secondly, an unstructured variance/covariance for regional mean parameters allows for the study of inter-regional functional connectivity, provided enough subjects are available to allow for accurate estimation. Finally, an exchangeable correlation structure within regions allows for the consideration of intra-regional functional connectivity. We perform estimation for our model using Markov Chain Monte Carlo (MCMC) techniques implemented via Gibbs sampling which, despite the high throughput nature of the data, can be executed quickly (less than 30 minutes). We apply our Bayesian hierarchical model to two novel fMRI data sets: one considering inhibitory control in cocaine-dependent men and the second considering verbal memory in subjects at high risk for Alzheimer’s disease. The unifying hierarchical model presented in this manuscript is shown to enhance the interpretation content of these data sets

    POPULATION FUNCTIONAL DATA ANALYSIS OF GROUP ICA-BASED CONNECTIVITY MEASURES FROM fMRI

    Get PDF
    In this manuscript, we use a two-stage decomposition for the analysis of func- tional magnetic resonance imaging (fMRI). In the first stage, spatial independent component analysis is applied to the group fMRI data to obtain common brain networks (spatial maps) and subject-specific mixing matrices (time courses). In the second stage, functional principal component analysis is utilized to decompose the mixing matrices into population- level eigenvectors and subject-specific loadings. Inference is performed using permutation-based exact conditional logistic regression for matched pairs data. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and the major direction of variation in the mixing matrices. The method is applied to a novel fMRI study of Alzheimer\u27s disease risk under a verbal paired associates task. We found empirical evidence of alternative ICA-based metrics of connectivity in clinically asymptomatic at risk subjects when compared to controls

    Two-stage Decompositions for the Analysis of Functional Connectivity for fMRI With Application to Alzheimer\u27s Disease Risk

    Get PDF
    Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with numerous diseases including Alzheimer\u27s disease and mild cognitive impairment. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a case-control functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer\u27s disease risk under a verbal paired associates task. We found empirical evidence of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles

    Molecular Characterization of NRXN1 Deletions from 19,263 Clinical Microarray Cases Identifies Exons Important for Neurodevelopmental Disease Expression

    Get PDF
    PURPOSE: The purpose of the current study was to assess the penetrance of NRXN1 deletions. METHODS: We compared the prevalence and genomic extent of NRXN1 deletions identified among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional clinically relevant copy-number variations (CNVs) was used as a proxy to estimate the relative penetrance of NRXN1 deletions. RESULTS: We identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained for developmental delay/intellectual disability that were significantly greater than in controls (odds ratio (OR) = 8.14; 95% confidence interval (CI): 2.91-22.72; P \u3c 0.0001). Ten (22.7%) of these had a second clinically relevant CNV. Subjects with a deletion near the 3\u27 end of NRXN1 were significantly more likely to have a second rare CNV than subjects with a 5\u27 NRXN1 deletion (OR = 7.47; 95% CI: 2.36-23.61; P = 0.0006). The prevalence of intronic NRXN1 deletions was not statistically different between cases and controls (P = 0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a second rare CNV at a prevalence twice as high as that for exonic NRXN1 deletion cases (P = 0.0035). CONCLUSIONS: The results support the importance of exons near the 5\u27 end of NRXN1 in the expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to substantially increase the risk for clinical phenotypes.Genet Med 19 1, 53-61

    Candidate Gene Analysis of Femoral Neck Trabecular and Cortical Volumetric Bone Mineral Density in Older Men

    Get PDF
    In contrast to conventional dual-energy X-ray absorptiometry, quantitative computed tomography separately measures trabecular and cortical volumetric bone mineral density (vBMD). Little is known about the genetic variants associated with trabecular and cortical vBMD in humans, although both may be important for determining bone strength and osteoporotic risk. In the current analysis, we tested the hypothesis that there are genetic variants associated with trabecular and cortical vBMD at the femoral neck by genotyping 4608 tagging and potentially functional single-nucleotide polymorphisms (SNPs) in 383 bone metabolism candidate genes in 822 Caucasian men aged 65 years or older from the Osteoporotic Fractures in Men Study (MrOS). Promising SNP associations then were tested for replication in an additional 1155 men from the same study. We identified SNPs in five genes (IFNAR2, NFATC1, SMAD1, HOXA, and KLF10) that were robustly associated with cortical vBMD and SNPs in nine genes (APC, ATF2, BMP3, BMP7, FGF18, FLT1, TGFB3, THRB, and RUNX1) that were robustly associated with trabecular vBMD. There was no overlap between genes associated with cortical vBMD and trabecular vBMD. These findings identify novel genetic variants for cortical and trabecular vBMD and raise the possibility that some genetic loci may be unique for each bone compartment. © 2010 American Society for Bone and Mineral Researc

    Oral health and social and emotional well-being in a birth cohort of Aboriginal Australian young adults

    Get PDF
    Background: Social and emotional well-being is an important component of overall health. In the Indigenous Australian context, risk indicators of poor social and emotional well-being include social determinants such as poor education, employment, income and housing as well as substance use, racial discrimination and cultural knowledge. This study sought to investigate associations between oral health-related factors and social and emotional well-being in a birth cohort of young Aboriginal adults residing in the northern region of Australia's Northern Territory. Methods: Data were collected on five validated domains of social and emotional well-being: anxiety, resilience, depression, suicide and overall mental health. Independent variables included socio-demographics, dental health behaviour, dental disease experience, oral health-related quality of life, substance use, racial discrimination and cultural knowledge. Results: After adjusting for other covariates, poor oral health-related items were associated with each of the social and emotional well-being domains. Specifically, anxiety was associated with being female, having one or more decayed teeth and racial discrimination. Resilience was associated with being male, having a job, owning a toothbrush, having one or more filled teeth and knowing a lot about Indigenous culture; while being female, having experienced dental pain in the past year, use of alcohol, use of marijuana and racial discrimination were associated with depression. Suicide was associated with being female, having experience of untreated dental decay and racial discrimination; while being female, having experience of dental disease in one or more teeth, being dissatisfied about dental appearance and racial discrimination were associated with poor mental health. Conclusion: The results suggest there may be value in including oral health-related initiatives when exploring the role of physical conditions on Indigenous social and emotional well-being.Lisa M Jamieson, Yin C Paradies, Wendy Gunthorpe, Sheree J Cairney and Susan M Sayer

    A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants

    Get PDF
    Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164\ua0Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models
    • …
    corecore