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Covariate-adjusted Nonparametric Analysis of Magnetic

Resonance Images using Markov Chain Monte Carlo

Haley Hedlin, Brian Caffo, Ziyad Mahfoud and Susan Spear Bassett

Abstract

Permutation tests are useful for drawing inferences from imaging data because of their

flexibility and ability to capture features of the brain that are difficult to capture parametri-

cally. However, most implementations of permutation tests ignore important confounding

covariates. To employ covariate control in a nonparametric setting we have developed a

Markov chain Monte Carlo (MCMC) algorithm for conditional permutation testing using

propensity scores. We present the first use of this methodology for imaging data. Our

MCMC algorithm is an extension of algorithms developed to approximate exact conditional

probabilities in contingency tables, logit, and log-linear models. An application of our non-

parametric method to remove potential bias due to the observed covariates is presented.

1 Introduction

In this paper we introduce a methodology to identify differences in brain structure or function

between two groups. The method we propose uses permutation tests to detect differences in

brain structure and function as measured by imaging data. Permutation testing is widely used

in the neuroimaging community because of its flexibility and ability to capture features of the

observed data that would be difficult to capture parametrically and its ability to account for

complex covariance structures (Hayasaka and Nichols, 2003; Nichols and Holmes, 2002; Bullmore
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et al., 1999; Arndt et al., 1996; Holmes et al., 1996). The methodology we propose extends

the permutation tests used in the neuroimaging field by conditioning on the observed covariates

using a propensity score model. The theory behind the approach draws upon the conditional

permutation test proposed by Rosenbaum (1984), exact conditional tests, and propensity scores

as developed by Rosenbaum and Rubin (1983). Our manuscript represents the first application

of conditional permutation methods using propensity scores for neuroimaging data. Further, we

develop an adaptation of the Diaconis/Sturmfels algorithm for sampling conditional permutations.

Our goal is to compare images across two groups and identify localized regions of group

differences that warrant further research, without a priori selection of regions of interest. Our

methods apply generally, wherever two-group comparisons are of interest. For example they could

apply to contrast maps from a functional magnetic resonance imaging (fMRI) study, volumetric

maps from a voxel-based morphometry study, registered diffusion imaging summaries, such as

fractional anisotropy, tracer images from a positron emission computed tomography study and so

on. In such studies permutation testing is common practice. However, imbalance in treatment

assignment for confounding variables is a common problem.

Hence, to remove potential bias due to the observed covariates we devise a method to control

for them (Bross, 1964; Gail et al., 1988; Edgington, 1995; Kennedy, 1995; Anderson and Legendre,

1999; Rosenbaum, 2002). The most elementary and common approach to accomplish this goal

with permutation tests is through a stratified analysis that permutes treatment labels within strata

for each category of the covariates. This approach has the drawback of only being applicable

for one or a few categorical covariates. When adjusting for more than one covariate, one must

stratify by their crossed levels, reducing counts within bins.

An appealing approach creates subclasses defined by binning estimated propensity scores

(Rosenbaum and Rubin, 1984) and then permutes treatment labels within those subclasses to

make inferences. Here the propensity score is the probability of treatment assignment given the

confounding covariates (Rosenbaum and Rubin, 1983). It has been shown that the propensity

score is a balancing mechanism for covariate control (Rosenbaum and Rubin, 1983). If treatment

2

http://biostats.bepress.com/jhubiostat/paper187



assignment was randomized, the propensity score is known, otherwise it must be estimated.

Estimation of the propensity score is often achieved with a logit model on treatment assignment.

The estimated scores are then the natural scale mean predictions from the model. Propensity

scores are used in a variety of ways, including regression adjustment, weighting, stratification and

others (Rosenbaum and Rubin, 1984; D’Agostino, 1998; Rosenbaum, 2002). Most germane to

our discussion is stratification, where five (or so) bins of the estimated scores are created and

used for covariate control.

A benefit of propensity scores is the reduction of a complex covariate space to the single

estimated propensity score. Thus, permuting treatment labels within estimated propensity score

strata applies more generally than the covariate stratification discussed above, as it can be used for

multiple continuous or categorical covariates. Moreover, analysis of estimated propensity scores

forces a discussion on the comparability of the groups. In addition, the technique facilitates

a discussion of causal interpretations and assumptions. However, under such an analysis, the

uncertainty in estimating the propensity score is not taken into account. Also, the propensity

score model itself must be correctly specified and does not control for important omitted or

uncollected covariates, assumptions that our proposed methodology shares.

We propose to use conditional permutation testing using a propensity score model. This

method conditions on the sufficient statistics for a logit propensity score model and permutes

treatment labels under this conditional distribution. Thus one does not need actual estimates

of the propensity scores, as the parameters in the model drop out via the conditioning. Also,

arbitrary strata bins are not necessary. However, it does require a correctly specified logit model

on treatment assignment. The logit link function is specifically necessary, being the canonical

link function for binary data and yielding closed form minimal sufficient statistics. Furthermore,

conditional permutation testing does not apply universally, as the conditional distribution can be

uninformative. For example, when conditioning on several continuous covariates, the observed

treatment assignment may be the only permutation that satisfies the sufficient statistics. A final

complication is computational. Conditional permutation testing is computationally more intensive
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and intricate than using propensity score strata. However, when applicable and computationally

feasible, conditional permutation testing is preferable to using propensity score bins.

This manuscript represents the first use of conditional permutation testing in neuroimaging

and hence we view it as a proof of concept. We connect computational methods for exact testing

to generating conditional permutations to perform the relevant computing. We use an example

dataset containing MR images of subjects identified as having a high familial risk of Alzheimer’s

disease and a group of controls to illustrate the methodology.

The paper begins with a discussion of the example dataset (Section 2), permutation tests

(Section 3), propensity scores (Section 4), Markov chain Monte Carlo (Section 5.1), and cluster-

level tests (Section 5.3). In Section 5.2 we describe our proposed algorithm and we present results

of its application in Section 6. Finally, we conclude with a discussion in Section 7.

2 Example dataset

The dataset used as an example consists of contrast maps from a verbal paired associates func-

tional MRI task. The groups in question are either at high familial risk for Alzheimer’s disease

or control. The at-risk group had at least one autopsy confirmed parent and at least one addi-

tional affected first degree relative per probable clinical diagnosis. The control subjects had no

diagnosed first degree relatives. At the time of imaging, the control and the at-risk subjects were

clinically asymptomatic.

The fMRI paradigm included encoding (learning) and recall phases in a blocked paradigm.

In the encoding phase, subjects were presented with unrelated word pairs. In the recall phase,

subjects were presented the first word and asked to recall the second. This paradigm was chosen

as loss of verbal memory is one of the early symptoms of Alzheimer’s disease (Bookheimer et al.,

2000).

We analyze the contrast map comparing recall blocks to rest. The fMRI time series was

smoothed using a Gaussian filter with a 5 mm full width at half maximum, coregistered within
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a subject and normalized to the Montreal Neurological Institute template. The normalization

allows for the comparison of images across subjects in a standard space. The preprocessing

methods are described further in Bassett et al. (2006). The design matrix was convolved with

the default haemodynamic response function in SPM (Friston et al., 2007). The fMRI time series

was regressed on the design matrix voxel-by-voxel to obtain contrast maps which were retained

for inter-subject group-level analysis. In this manuscript we only consider the recall versus rest

contrast.

The images focus on a coronal band encompassing the medial temporal lobe and surrounding

structures, where group differences were hypothesized to exist. Each contrast map is a 79x95x68

array of 2mm3 voxels in template space conceptually representing the change in regional cerebral

blood flow between the recall and rest conditions.

The example dataset consists of 161 right-handed subjects between the ages of 48 and 83. We

consider two important potential confounders, the apolipoprotein E (APOE) gene and gender.

Presence of ε4 alleles of the APOE gene has been linked with the risk of Alzheimer’s disease

(Corder et al., 1993; Saunders et al., 1993; Strittmatter et al., 1993). Gender is a potential

confounder, as females have been shown to have a higher incidence of Alzheimer’s disease (see

Gao et al., 1998, for example). However, gender is fairly balanced between the groups, so its

inclusion is primarily to illustrate the algorithm. Age, another important confounder for risk status,

was not necessary to add as a confounder, as the two groups had very similar age distributions.

Figure 1 shows the cross-classification of at-risk status with gender and ε4 status. Eighty five are

at-risk for late-onset Alzheimer’s disease, 75 of the subjects are male and 46 have at least one ε4

allele of the APOE gene.

Control At-risk
No ε4 At least 1 ε4 No ε4 At least 1 ε4

Female 31 7 32 16
Male 31 7 21 16

Table 1: Alzheimer’s disease data set, cross-classification of at-risk status with gender and ε4
status.

5
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3 Permutation tests

Below we motivate permutation testing using counterfactual notation as part of the motivation.

We note that our example dataset is not ideal for this discussion, as it is difficult to conceptualize

the meaning of a subject having a different (counterfactual) group status, a problem that does not

exist for assignable treatments. Therefore, we use the generic term “treatment” as the labeling

being permuted. However, we propose the use of these methods for covariate control in our

non-assignable setting in the same way that propensity scores are frequently used as a balancing

mechanism unrelated to any causal discussion.

Consider the possibility that each subject i has an voxel-specific outcome that would be

observed if they received a treatment of interest and an outcome that would be observed if they

were in a control group, r1i(v) and r0i(v) for voxel v, respectively (see Rosenbaum, 1984; Rubin,

1974, 1977). Only r1i(v) or r0i(v) can be observed, as each subject either received the treatment

or control; r1i(v)− r0i(v) cannot be measured directly.

A strong null hypothesis specifies that the observed outcome for a subject does not differ

depending on which treatment he or she received, i.e H0 : r1i(v) = r0i(v) for all voxels v. If this

were the case, treatment labels among “similar” subjects are arbitrary. Hence, under the null

hypothesis we assume that the labels are exchangeable among subjects with similar covariates

(Good, 2006). This assumption justifies permuting the labels while keeping the covariates fixed

to create the null distribution from which inferences can be drawn about the mean population

difference (Nichols and Holmes, 2002; Pitman, 1937).

We emphasize that, in imaging applications, separate permutation tests are not performed at

each voxel. Instead, treatment labels are permuted to images and a map of statistics is created.

Performed in this manner, an appealing feature of permutation tests is their ability to capture

features and account for correlation without making stringent assumptions (Rabe-Hesketh et al.,

1997; Holmes et al., 1996). In addition, permutation tests allow the researcher to pick an

image-wide test statistic (Nichols and Holmes, 2002; Bullmore et al., 1999). Notably, in imaging

applications this allows researchers to choose statistics operating on the image obtained after
6
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calculating voxel-wise statistics, such as supra-threshold cluster sizes (see section 5.3).

The null distribution used in permutation testing is ideally formed by enumerating each of the

possible permutations of the data. However, for a large number of observations it is not feasible

to enumerate all of the possibilities, even when permuting within crossed levels of covariates.

For example, the data presented in Table 1 has 161 subjects and four levels of two crossed

dichotomous covariates yielding

 63

31

 ∗
 23

7

 ∗
 23

7

 ∗
 52

31

 ≈ 1043

permutations possible, which is clearly too large to be enumerated. Thus permutation testing

is usually performed via Monte Carlo. For ordinary permutation testing, or permuting within

levels of strata, this process is trivial. However, using Monte Carlo to generate permutations for

conditional permutation testing is more difficult. We propose the use of Markov chain Monte

Carlo (MCMC) to generate conditional permutations.

4 Conditional permutation and propensity scores

Consider a comparison of two groups with membership denoted by yi where yi = 1 if subject

i belongs to the group of interest and yi = 0 if subject i belongs to the control group for

i = 1, . . . , n. For example, we may be interested in a group receiving a specific treatment, an

exposed subset of the population, or a group that has or is at-risk for a certain disease. Suppose

we also have a set of observed covariates associated with group membership for which we would

like to control. Denote the d-vector of covariates for subject i by xi. Our aim is to identify

significant differences between the group of interest and the control group while removing bias

due to the observed covariates.

Data gathered from randomized studies are assumed to have treatment labels that are ex-

changeable due to the random assignments to treatment groups (Good, 2006). Observational

7
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studies lack a randomization mechanism and, as a result, the distribution of covariates may differ

between the group of interest and the control group. Rosenbaum and Rubin introduced the

propensity score in 1983 to account for such bias in observational studies. The propensity score

for subject i (pi) is defined to be the conditional probability of being a member in the group

of interest given the observed covariates, i.e. pi = P (Yi = 1|Xi = xi). Given pi, Yi and Xi

are conditionally independent, i.e. Yi ⊥ Xi | pi (Rosenbaum and Rubin, 1983). Hence, condi-

tioning on propensity scores allows us to control for any underlying bias that may be present in

the two groups due to the observed covariates. Unlike randomization, propensity scores do not

balance the unobserved covariates, unless the unobserved covariates are strongly correlated with

the observed covariates (Rosenbaum and Rubin, 1984).

The strongly ignorable treatment assumption must be satisfied to use propensity scores to

make causal inference in observational studies (Rosenbaum, 1984; Rosenbaum and Rubin, 1983).

This assumption requires that (r1i, r0i) ⊥ Yi | Xi = xi and 0 < P (Yi = 1 | Xi = xi) < 1

for all subjects i. This is not the case, however, when the group of interest consists of diseased

individuals and the control group is healthy, as is often true in neurological studies. In this

situation the propensity scores are used only to balance the covariates and the results no longer

have a causal interpretation (Joffe and Rosenbaum, 1999; Rosenbaum and Rubin, 1983).

Propensity scores are used in statistical analyses in various ways. It is common to create

subclasses of propensity scores by binning similar pi’s. Subclasses can be used to define the

subpopulations in stratified analyses or can be used in conditional permutation tests to define

groups of similar covariates among which the group labels can be permuted. For a small number

of covariates with only a few levels it is straightforward to bin the propensity scores. For example,

if we wish to control for two dichotomous covariates there are four possible propensity scores

that can arise, i.e. p00 = P (Y = 1|X1 = 0, X2 = 0), p01 = P (Y = 1|X1 = 0, X2 = 1),

p10 = P (Y = 1|X1 = 1, X2 = 0), and p11 = P (Y = 1|X1 = 1, X2 = 1). If we were to define

four subclasses, each corresponding to a propensity score, permuting labels within subclass would

be equivalent to permuting labels among individuals with the same covariates. In the example
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dataset from Section 2 these four subclasses would be females with no ε4 alleles, males with no

ε4 alleles, females with at least one ε4 allele, and males with at least one ε4 allele.

As the complexity and/or number of covariates increases, the number of propensity scores

grows. When the number of propensity scores is large there is no longer a clear choice of cutoff

to define the subclasses, resulting in a subjective process that varies between researchers. If the

bins are too wide, error will be introduced because individuals in the same subclass may no longer

have similar probabilities of Yi = 1. On the other hand, too many bins will reduce the number

of observations per bin, which hinders conditional permutation tests or, in the case of stratified

analyses, greatly increases the number of subpopulation analyses (D’Agostino, 1998).

Under the assumption that a logit model describes the relationship between y and x, then

the propensity score satisfies:

logit{pi} = xiβ. (1)

Furthermore, we assume that the observations are independent, yielding the likelihood

P (Y = y) =
∏

i

P (Yi = yi) =
exp(yTxβ)∏

i {1 + exp(xiβ)}
, (2)

where y is the vector of treatment assignments and x is the matrix of covariates with xi for each

row. From Equation (2) xTy is a sufficient statistic for β (that is also minimal, see Cox and

Snell, 1989). That is, by assuming the logit model we arrive at a relatively simple, closed form

minimal sufficient statistic that can be used to derive the conditional distribution (Rosenbaum,

1984; Rosenbaum and Rubin, 1983).

The existence of these minimal sufficient statistics implies that Y ⊥ X | XTY = s. Further-

more,

P (Y = y | XTY = s) = 1/|Γ| for y ∈ Γ

where Γ = {y ∈ {0, 1}n|XTY = s} is the space of treatment assignments satisfying the sufficient

statistics. This is the distribution that conditional permutation testing uses for inference. Notice

that if x contains only an intercept, then the sufficient statistic is equivalent to the total number
9
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of treated and controls and the conditional distribution is uniform on this space. Hence in this

case, conditional permutation testing reduces to standard permutation testing.

In Section 5, we introduce an algorithm that implicitly creates subclasses by conditioning on

the covariates, entirely bypassing the calculation and binning of propensity scores. For algorithmic

reasons, described subsequently, we also utilize the information in x to run the chain. We describe

the impact of this choice below.

5 Methods

5.1 Markov chain Monte Carlo

Markov chain Monte Carlo is a method of sampling from a density using Markovian samples. A

valid MCMC algorithm starts at an initial point and proceeds to traverse the sample space through

a Markov chain where asymptotically the chain reaches its stationary distribution (Robert and

Casella, 2004; Gilks et al., 1996; Chib and Greenberg, 1995). Thus, realizations of the chain can

be used to estimate features of the stationary distribution (Gilks et al., 1996).

Several properties are necessary to ensure that the Markov chain will appropriately explore its

stationary distribution. First, the chain must be aperiodic and irreducible. Aperiodicity is satisfied

if there are no deterministic visits to subsets of the chain. Irreducibility is the condition that any

state a must be reachable from state b in a finite number of transitions for all states b. Finally,

we require that the target distribution is the stationary distribution of the chain. That is, if the

chain is started via a simulation from the target distribution, then the marginal distribution of

every iterate is also the target distribution.

For simple moment estimators, stationarity of the chain is not required, as consistency and

Markov chain central limit theorems can produce valid interval estimates for moments of the

stationary density provided standard error estimates (Jones et al., 2006; Jones and Hobert, 2001;

Jones, 2004; Hobert et al., 2002). Moreover, standard MCMC practice suggests that subsampling

the chain, i.e. only retaining every mth iteration, is wasteful and unnecessary (MacEachern and
10
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Berliner, 1994). However, our problem is unique by MCMC standards. Running of the chain is

trivial and billions of samples (treatment assignments) are easy to produce. In contrast, creating

the statistical map for each treatment assignment on the collection of images is computationally

burdensome. Therefore, a high quality sample of nearly independent permutations is desired.

Hence, contrary to standard MCMC practice, we subsample the chain quite heavily. To monitor

the chain, we examine trace plots and estimated autocorrelation functions of the statistic of

interest evaluated at the subsampled chain.

We use the Metropolis/Hastings algorithm to guarantee the appropriate invariant density

for the chain (Chib and Greenberg, 1995; Hastings, 1970). As the desired stationary density is

uniform, our Metropolis coin flip accepts the proposed state with probability min
{

1, P (Yc→Yp)

P (Yp→Yc)

}
where Yc is the current state of the chain and Yp is the proposal.

5.2 MCMC algorithm

Our proposed algorithm applies to any linear predictor with polytomous confounding variables

and no interactions in the linear predictor of the logit model on the propensity score. Below,

we describe the algorithm in generality then describe it via a specific example with two binary

covariates. We first cover existing methods for generating from Γ.

The algorithm we present below grew from theory developed to approximate conditional

probabilities in contingency tables, logit and log-linear models. Agresti (1992) surveys these

methods and Mehta and Patel (1998) review exact procedures for contingency tables. There are

currently several approaches for simulating from conditional distributions for logit and loglinear

models (Chen et al., 2005; Caffo and Booth, 2001; Booth and Butler, 1999; McDonald et al.,

1999; Smith et al., 1996; Forster et al., 1996). Agresti (1992) gives a historical review of methods

for exact inference for situations that do not require Markov chain algorithms. More recently,

Caffo and Booth (2003) surveyed algorithms for Monte Carlo conditional inference for logit and

log-linear models. In particular, the survey includes Diaconis and Sturmfels (1998) who developed

a theory for generating conditional distributions for contingency tables and logit models given the

11
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sufficient statistic. Their theory generalizes the random walk algorithm consisting of a series of

+/− steps, which is the basis of the algorithm we propose.

Our basic strategy for generating conditional permutations is as follows. First, conditioning on

xTy and knowledge of x fixes the margins of the contingency table obtained by cross-classifying

treatment assignment and the confounding variables. Our algorithm first operates on this contin-

gency table. Given a current permutation, we calculate its associated contingency table. Next,

we find a new contingency table satisfying the observed margins using the Diaconis/Sturmfels

algorithm. We then randomly draw the new permutation from all of the permutations that are

consistent with the new contingency table.

To elaborate, let yc be the current state (permutation) with associated contingency table cc.

Let e1, . . . , ek be the Markov basis from the Diaconis/Sturmfels algorithm. We randomly select

an element from the basis to create a new table, say cp = cc +ej. If cp contains negative entries,

the current state is retained and the algorithm moves on to the next iteration. If not, then a

proposal permutation is generated from all permutations whose associated contingency table is

cp. Generating such a permutation is exactly generating a permutation from the crossed levels

of the covariates with counts given by cp. The forward probability for the proposal, yp, satisfies

P (yc → yp) = P (cc → cp)P (yp | cp)

and the backward probability is then

P (cp → cc)P (yc | cc).

As P (cp → cc) = P (cc → cp) the Metropolis coin flip probability is

min

{
1,
P (yc | cc)

P (yp | cp)

}
= min

{
1,
|cp|
|cc|

}
,

where |cc| and |cp| are the number of permutations satisfying that contingency table, respectively.
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An example below shows that this is a trivial quantity to calculate.

The algorithm described above creates an aperiodic, irreducible, reversible chain that will

converge to the uniform stationary distribution on Γ. Aperiodicity of the chain is clear, we

argue for irreducibility below. Pick any two treatment assignments from Γ, say y1 and y2.

Suppose that these elements have different associated contingency tables. As guaranteed by the

Diaconis/Sturmfels algorithm, the chain can move between the two contingency tables. Then, as

we randomly generate permutations given the new contingency table, generating y2 is possible.

In the event that y1 and y2 have the same associated contingency table, the same argument

applies with the caveat that the algorithm must move away and return to the common table in

order to generate y2, an event that has non-zero probability.

This hybrid strategy offers many benefits over simply applying the Diaconis/Sturmfels algo-

rithm directly to the logit propensity score model. First, deriving the Diaconis/Sturmfels Markov

chain for moving between contingency tables is much easier to derive than the chain for the un-

derlying logit model. Establishing the set of basic moves (Markov bases) for a given problem has

been solved generally by Diaconis and Sturmfels (1998). Unfortunately, their method requires

knowledge of computational algebra and often the computational complexity of the algebraic

problem rivals that of avoiding MCMC and simply enumerating the space of permutations. How-

ever, Markov bases for large classes of log-linear models have been created (Dobra, 2003). These

models include all of the contingency tables with fixed margins considered in this manuscript.

Moreover, computationally calculating the available permutations satisfying the new contingency

table is a trivial problem compared to deriving the chain for the logit model.

The use of x in the running of the chain does not impact the permutations. That is, the

result of the chain are permutations uniformly distributed on Γ regardless of the use of x in the

algorithm. Hence the propensity score interpretation of the permutations remains appropriate.

To facilitate a demonstration of the algorithm we consider our example data with the two

dichotomous covariates, x1 and x2 and no interaction. Along with our dichotomous group variable

y, x1 and x2 give rise to a 2x2x2 contingency table. Conditioning on the sufficient statistic from

13
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(a) e1, the first element of the Markov basis

y = 0 y = 1
x2 = 0 x2 = 1 x2 = 0 x2 = 1

x1 = 0 + − − +
x1 = 1 − + + −

(b) e2, the second element of the Markov basis

y = 0 y = 1
x2 = 0 x2 = 1 x2 = 0 x2 = 1

x1 = 0 − + + −
x1 = 1 + − − +

Table 2: The two elements in the Markov basis from the Diaconis/Sturmfels algorithm for a
2x2x2 table

Section 4 and xT1 in the 2x2x2 contingency table implies fixing the margins (see the Appendix).

Table 2 contains the two elements in the Markov basis for a 2x2x2 table from the Diaco-

nis/Sturmfels algorithm. A coin flip at each iteration determines which of the elements will be

added to the current table, cc, to generate the proposed table, cp. As an example, consider the

initial iteration of the chain. The contingency table associated with the observed treatment labels

is given in Table 1, cc in this initial iteration. Suppose that e1 was the element randomly chosen

from the Markov basis. The proposed contingency table, cp = cc + e1, is given in Table 3. cp

contains no negative entries, so a Metropolis coin flip sets cp = cc with probability α. In general,

|cq| =

 n+00
q

n100
q

 ∗
 n+01

q

n101
q

 ∗
 n+10

q

n110
q

 ∗
 n+11

q

n111
q


for q = c, p. It follows that α = u

w
for

u =
1

|cc|
=


 63

31

 ∗
 23

7

 ∗
 52

31

 ∗
 23

7



−1
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and

w =
1

|cp|
=


 63

32

 ∗
 23

6

 ∗
 52

30

 ∗
 23

8



−1

where the superscripts refer to the cells in the 2x2x2 tables by their (y, x1, x2) indices and +

denotes sum over a dimension. Suppose that according to the flip, cp is accepted. For iterations

that will be subsampled, yp is randomly chosen from among the |cp| permutations associated

with cp. If the iteration is not being subsampled, there is no need to draw yp because it would

immediately be converted back to its associated contingency table to begin the following iteration.

Control At-risk
No ε4 At least 1 ε4 No ε4 At least 1 ε4

Female 32 6 31 17
Male 30 8 22 15

Table 3: Proposed contingency table in initial iteration.

5.3 Cluster-level tests

We wish to identify differences at the level of several voxels for various reasons. First and foremost,

the scientific interest is often of differences at the cluster level as opposed to individual voxel-level

or regional differences. Cluster-level inferences are often pursued because the spatial correlation

between voxels inherent in MR images can mask any voxel-level differences (Wager et al., 2007).

Clusters of voxels, on the other hand, tend to be independent under the null hypothesis (Bullmore

et al., 1999). Finally, analyses at the cluster level are more sensitive than regional or global tests

(Bullmore et al., 1999; Poline and Mazoyer, 1992).

The choice of which test statistic to use depends on the hypothesis being considered. In the

following application, we use the maximum cluster size test statistic to test the null hypothesis

of no difference between the at-risk group and the control group. The cluster size has the

drawback that strong but small very localized differences are penalized. Another suprathreshold

cluster test that combats this problem is the exceedance mass which uses the integral of the

cluster above the threshold as its test statistic (Bullmore et al., 1999). Yet, another approach
15
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considers the maximum statistic within clusters, i.e. considering cluster height instead of extent.

Single threshold tests, which reject the null hypothesis of no difference when any voxel exceeds

a threshold (Nichols and Holmes, 2002), also avoid this issue, yet have the drawback of not

considering spatial contiguity of significant results.

With hundreds of thousands of voxels in each image, multiplicity presents a problem, regardless

of the chosen statistic. Bonferroni corrections are a potential solution, but, as a consequence of

ignoring the spatial correlation, are too conservative (Brett et al., 2007). We use the distribution

of the maximum suprathreshold cluster size to combat multiplicity. That is, at each permutation,

we calculate all contiguous clusters and take the largest. Each individual cluster from the observed

treatment assignment is then compared to this distribution. This offers control for the familywise

error rate (see Nichols and Holmes, 2002) and can be applied generally, for example to the

exceedance mass or peak value testing.

5.4 Application to MRI dataset

We apply our proposed method to the example dataset introduced in Section 2 to test the null

hypothesis that there are no differences between the at-risk (AR) group and the control group

(CTL) while controling for the gender and APOE ε4 status of the subjects. The goal of the

analysis is to locate clusters of voxels where there is evidence of a difference across the two

groups within the portion of the brain that was imaged.

Throughout we assume a logit model to characterize the relationship between group mem-

bership and the two covariates, gender and APOE ε4 status

logitP [ARi] = β0 + β1Genderi + β2APOE4i i = 1, 2, . . . , 161

where Genderi = 1 if subject i is male and APOE4i = 1 if subject i has at least one ε4 allele

of the APOE gene. By conditioning on the sufficient statistic for β, we control for the effects

gender and APOE ε4 status (Mehta and Patel, 1998; Rosenbaum, 1984). Next, we conditionally
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permute the group labels on the images using the algorithm outlined in Section 5.

We ran the MCMC algorithm for 1,100,000,000 iterations, discarded the first 100,000,000,

and kept every 1,000,000th iteration after the burn-in. At each iteration that we kept, the images

were labeled AR or CTL, according to the current permutation. Then the z-statistic of the mean

difference between the AR and CTL groups was calculated at every voxel. This process is repeated

for each of the 1,000 permutations remaining after the burn-in and subsampling. We visually

examined the chain of z-statistics for a few randomly chosen voxels and the autocorrelation at

lags up to 500 to check that convergence had been achieved.

The maximum cluster is calculated from each of the 1,000 z-maps to create a null distribution

of the test statistic. To determine the suprathreshold cluster test significance, the maximum

cluster size of the original data is compared to the null distribution. Clusters were found using

hierarchical clustering of voxels in the z-map beyond a threshold of ±3.10. This threshold was

chosen a priori because it corresponds to a probability of 0.001 in each of the tails of a Normal

density. Finally, the p-value for a cluster is simply the proportion of permutations with maximum

cluster sizes as or more extreme than that obtained from the original observation. If a statistically

significant difference is found between the two groups, the voxels in the original image that fall

beyond the threshold indicate the areas that would warrant closer inspection in future research.

6 Results

The null distribution of the maximum cluster size calculated from the conditional permutations is

displayed as a histogram in Figure 1. In the example dataset there were two significant clusters of

voxels, one containing 4 voxels and the other containing 5 voxels. Hence, the maximum cluster

size in the z-map is 5 voxels, indicated in Figure 1 by the vertical line. From the null distribution

generated by the MCMC algorithm we calculate that the probability of observing data as or more

extreme than the example data to be 0.664 under the hypothesis of no difference between the two

groups. Traces such as those shown in Figure 2 were visually examined to verify that convergence

17
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had been achieved.

Figure 1: Null distribution created from conditional permutations with the observed maximum
cluster size indicated with the vertical red line.

These results differ from an earlier wave of the same data (Bassett et al., 2006), where

significant differences between the groups were seen. However, the results for this second wave

are confirmed by independent analyses using different methodology. Potential explanations for

the discrepant results in the second wave include differential attention to the task, informative

dropout, an actual decline in group differences and so on. However, we relegate a full scientific

explanation of the longitudinal differences in this study set to other work.

18
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Figure 2: Traces of the z-statistic from three randomly chosen voxels

Figure 3: The clusters beyond the z = ±2.33 threshold are projected to the surface and shown in
red. Note that this threshold is lower than that used in the analysis. The entire brain is pictured,
but only a coronal band encompassing the medial temporal lobe and surrounding structures was
imaged.
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7 Discussion

We have introduced a flexible method for covariate control in neuroimaging studies. The method

immediately applies to any image-based study with two groups and multiple categorical con-

founders in a logit propensity score model. The method uses an algorithm to permute the group

labels conditionally on the covariates. We introduced a novel MCMC implementation that is

applicable to a large class of models and settings. We applied the algorithm to an example fMRI

dataset comparing at-risk and control subjects. The application was not ideal for a causal dis-

cussion, hence application to a study with an assignable treatment with a full causal discussion

is a next step.

As is, the algorithm swaps the group labels on at most four individuals in each permutation.

To reduce the resulting high correlation between each iteration, we plan to implement a more

general version of the algorithm that alters the cells in the 2x2x2 by ±ε. At each iteration of

the algorithm, ε is chosen randomly from the set of non-negative integers such that the resulting

table has no negative cells. Increasing the number of subjects who are relabeled in each iteration

decreases the numbers of iterations required to sufficiently cover the support.

The algorithm currently applies to any setting with two treatments and multiple categorical

predictors with sufficient permutations after conditioning. However, we require knowledge of the

Markov basis for the associated contingency table/log-linear model. Hence, further character-

ization of the Markov bases in these settings is of interest. In addition, other Markov chain

algorithms, not based on the Diaconis/Sturmfels algorithm may produce more desirable chains.

Also, for large numbers of covariates and small, yet complex, space of permutations, network

algorithms may provide a fast method for enumeration (Hirji et al., 1987; Mehta et al., 2000).

Another extension is to consider more than two treatment levels. Potentially, baseline category

logit models could be used similarly to the logit models here. Further extensions would include

methods for continuous covariates. It is possible that methods of approximate conditioning

(Pierce and Peters, 1999) could be used.

Finally, extensions to longitudinal data, matched data and other settings with multiple images
20
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per subject are of interest. Parallels with traditional rank-based permutation methods (Mahfoud

and Randles, 2005a,b) provide an important foundation for future work along these lines.
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Appendix

Explanation of fixed margins

The margins in a 2x2x2 table are n0+0, n0+1, n1+0, n1+1, n00+, n01+, n10+, n11+, n0++, and

n1++ where the first subscript denotes the value of y, the second subscript denotes the value of

x1, the third subscript denotes the value of x2, and a + subscript indicates the sum over the

corresponding variable (see Table 4). We assume the logit model in equation (1) and condition

on the sufficient statistic S to eliminate the nuisance parameter β from the null distribution.

Specifically, when x = (1,x1,x2), S = (
∑

i yi,
∑

i x1iyi,
∑

i x2iyi). Note that
∑

i x1iyi = n11+

and
∑

i x2iyi = n1+1. Hence n11+ and n1+1 are fixed and, because
∑

i yi is fixed, so are n10+

and n1+0. We assume that x and the total number of observations, n = n1++ +n0++, are fixed.

Therefore fixing
∑

i yi implies that n−
∑

i yi must also be fixed. Fixing
∑

i x1i implies that n01+

is fixed because n11+ is fixed and fixing
∑

i x2i implies that n0+1 is fixed because n1+1 is fixed.

Finally, because n−
∑

i yi is fixed, we have that n00+ and n0+0 are fixed.

y = 0
x2 = 0 x2 = 1

x1 = 0 n000 n001 n00+

x1 = 1 n010 n011 n01+

n0+0 n0+1 n0++

y = 1
x2 = 0 x2 = 1

x1 = 0 n100 n101 n10+

x1 = 1 n110 n111 n11+

n1+0 n1+1 n1++

Table 4: Cell counts and margins in a 2x2x2 table
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