3,469 research outputs found
Electrical Tuning of Single Nitrogen-Vacancy Center Optical Transitions Enhanced by Photoinduced Fields
We demonstrate precise control over the zero-phonon optical transition
energies of individual nitrogen-vacancy (NV) centers in diamond by applying
multiaxis electric fields, via the dc Stark effect. The Stark shifts display
surprising asymmetries that we attribute to an enhancement and rectification of
the local electric field by photoionized charge traps in the diamond. Using
this effect, we tune the excited-state orbitals of strained NV centers to
degeneracy and vary the resulting degenerate optical transition frequency by
>10 GHz, a scale comparable to the inhomogeneous frequency distribution. This
technique will facilitate the integration of NV-center spins within photonic
networks.Comment: 10 pages, 6 figure
Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride
Hexagonal boron nitride (h-BN) is a tantalizing material for solid-state
quantum engineering. Analogously to three-dimensional wide-bandgap
semiconductors like diamond, h-BN hosts isolated defects exhibiting visible
fluorescence, and the ability to position such quantum emitters within a
two-dimensional material promises breakthrough advances in quantum sensing,
photonics, and other quantum technologies. Critical to such applications,
however, is an understanding of the physics underlying h-BN's quantum emission.
We report the creation and characterization of visible single-photon sources in
suspended, single-crystal, h-BN films. The emitters are bright and stable over
timescales of several months in ambient conditions. With substrate interactions
eliminated, we study the spectral, temporal, and spatial characteristics of the
defects' optical emission, which offer several clues about their electronic and
chemical structure. Analysis of the defects' spectra reveals similarities in
vibronic coupling despite widely-varying fluorescence wavelengths, and a
statistical analysis of their polarized emission patterns indicates a
correlation between the optical dipole orientations of some defects and the
primitive crystallographic axes of the single-crystal h-BN film. These
measurements constrain possible defect models, and, moreover, suggest that
several classes of emitters can exist simultaneously in free-standing h-BN,
whether they be different defects, different charge states of the same defect,
or the result of strong local perturbations
Spin-Dependent Quantum Emission in Hexagonal Boron Nitride at Room Temperature
Optically addressable spins associated with defects in wide-bandgap
semiconductors are versatile platforms for quantum information processing and
nanoscale sensing, where spin-dependent inter-system crossing (ISC) transitions
facilitate optical spin initialization and readout. Recently, the van der Waals
material hexagonal boron nitride (h-BN) has emerged as a robust host for
quantum emitters (QEs), but spin-related effects have yet to be observed. Here,
we report room-temperature observations of strongly anisotropic
photoluminescence (PL) patterns as a function of applied magnetic field for
select QEs in h-BN. Field-dependent variations in the steady-state PL and
photon emission statistics are consistent with an electronic model featuring a
spin-dependent ISC between triplet and singlet manifolds, indicating that
optically-addressable spin defects are present in h-BN a versatile
two-dimensional material promising efficient photon extraction, atom-scale
engineering, and the realization of spin-based quantum technologies using van
der Waals heterostructures.Comment: 38 pages, 34 figure
Chandra Observations of Radio-Loud Quasars at z > 4: X-rays from the Radio Beacons of the Early Universe
We present the results of Chandra observations of six radio-loud quasars
(RLQs) and one optically bright radio-quiet quasar (RQQ) at z = 4.1-4.4. These
observations cover a representative sample of RLQs with moderate radio-loudness
(R ~ 40-400), filling the X-ray observational gap between optically selected
RQQs and the five known blazars at z > 4 (R ~ 800-27000). We study the
relationship between X-ray luminosity and radio-loudness for quasars at high
redshift and constrain RLQ X-ray continuum emission and absorption. From a
joint spectral fit of nine moderate-R RLQs observed by Chandra, we find
tentative evidence for absorption above the Galactic N_H, with a best-fit
neutral intrinsic column density of N_H = 2.4^{+2.0}_{-1.8} x 10^{22} cm^{-2},
consistent with earlier claims of increased absorption toward high-redshift
RLQs. We also search for evidence of an enhanced jet-linked component in the
X-ray emission due to the increased energy density of the cosmic microwave
background (CMB) at high redshift, but we find neither spatial detections of
X-ray jets nor a significant enhancement in the X-ray emission relative to
comparable RLQs at low-to-moderate redshifts. Overall, the z ~ 4-5 RLQs have
basic X-ray properties consistent with comparable RLQs in the local universe,
suggesting that the accretion/jet mechanisms of these objects are similar as
well.Comment: 12 pages, The Astronomical Journal, in pres
Conceptual design of an orbital propellant transfer experiment. Volume 2: Study results
The OTV configurations, operations and requirements planned for the period from the 1980's to the 1990's were reviewed and a propellant transfer experiment was designed that would support the needs of these advanced OTV operational concepts. An overall integrated propellant management technology plan for all NASA centers was developed. The preliminary cost estimate (for planning purposes only) is 31.8 M is for shuttle user costs
Exploiting signal processing approaches for broadband echosounders
© International Council for the Exploration of the Sea, 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ICES Journal of Marine Science 74 (2017): 2262–2275, doi:10.1093/icesjms/fsx155.Broadband echosounders, which transmit frequency-modulated pulses, increase the spectral characterization of targets relative to narrowband echosounders, which typically transmit single-frequency pulses, and also increase the range resolution through broadband matched-filter signal processing approaches. However, the increased range resolution does not necessarily lead to improved detection and characterization of targets close to boundaries due to the presence of undesirable signal processing side lobes. The standard approach to mitigating the impact of processing side lobes is to transmit tapered signals, which has the consequence of also reducing spectral information. To address this, different broadband signal processing approaches are explored using data collected in a large tank with both a Kongsberg–Simrad EK80 scientific echosounder with a combination of single- and split-beam transducers with nominal centre frequencies of 18, 38, 70, 120, 200, and 333 kHz, and with a single-beam custom-built echosounder spanning the frequency band from 130 to 195 kHz. It is shown that improved detection and characterization of targets close to boundaries can be achieved by using modified replica signals in the matched filter processing. An additional benefit to using broadband echosounders involves exploiting the frequency dependence of the beam pattern to calibrate single-beam broadband echosounders using an off-axis calibration sphere.This research was supported by the NOAA Office of Science and
Technology, Advanced Sampling Technology Working Group.
G.L.L. was partially supported by NOAA Cooperative
Agreements NA09OAR4320129 and NA14OAR4320158 through
the NOAA Fisheries Quantitative Ecology and Socieconomics
Training (QUEST) program. A.C.L. was partially supported
through the Office of Naval Research Ocean Acoustics Program
- …