Hexagonal boron nitride (h-BN) is a tantalizing material for solid-state
quantum engineering. Analogously to three-dimensional wide-bandgap
semiconductors like diamond, h-BN hosts isolated defects exhibiting visible
fluorescence, and the ability to position such quantum emitters within a
two-dimensional material promises breakthrough advances in quantum sensing,
photonics, and other quantum technologies. Critical to such applications,
however, is an understanding of the physics underlying h-BN's quantum emission.
We report the creation and characterization of visible single-photon sources in
suspended, single-crystal, h-BN films. The emitters are bright and stable over
timescales of several months in ambient conditions. With substrate interactions
eliminated, we study the spectral, temporal, and spatial characteristics of the
defects' optical emission, which offer several clues about their electronic and
chemical structure. Analysis of the defects' spectra reveals similarities in
vibronic coupling despite widely-varying fluorescence wavelengths, and a
statistical analysis of their polarized emission patterns indicates a
correlation between the optical dipole orientations of some defects and the
primitive crystallographic axes of the single-crystal h-BN film. These
measurements constrain possible defect models, and, moreover, suggest that
several classes of emitters can exist simultaneously in free-standing h-BN,
whether they be different defects, different charge states of the same defect,
or the result of strong local perturbations