1,197 research outputs found

    High Frequency Quantum Admittance and Noise Measurement with an On-chip Resonant Circuit

    Full text link
    By coupling a quantum detector, a superconductor-insulator-superconductor junction, to a Josephson junction \textit{via} a resonant circuit we probe the high frequency properties, namely the ac complex admittance and the current fluctuations of the Josephson junction at the resonant frequencies. The admittance components show frequency dependent singularities related to the superconducting density of state while the noise exhibits a strong frequency dependence, consistent with theoretical predictions. The circuit also allows to probe separately the emission and absorption noise in the quantum regime of the superconducting resonant circuit at equilibrium. At low temperature the resonant circuit exhibits only absorption noise related to zero point fluctuations, whereas at higher temperature emission noise is also present.Comment: 15 pages, 15 figure

    Quantum Noise Measurement of a Carbon Nanotube Quantum Dot in the Kondo Regime

    Get PDF
    The current emission noise of a carbon nanotube quantum dot in the Kondo regime is measured at frequencies Îœ\nu of the order or higher than the frequency associated with the Kondo effect kBTK/hk_B T_K/h, with TKT_K the Kondo temperature. The carbon nanotube is coupled via an on-chip resonant circuit to a quantum noise detector, a superconductor-insulator-superconductor junction. We find for hΜ≈kBTKh \nu \approx k_B T_K a Kondo effect related singularity at a voltage bias eV≈hÎœeV \approx h \nu , and a strong reduction of this singularity for hΜ≈3kBTKh \nu \approx 3 k_B T_K, in good agreement with theory. Our experiment constitutes a new original tool for the investigation of the non-equilibrium dynamics of many-body phenomena in nanoscale devices.Comment: 6 pages, 4 figure

    Phylloquinone (vitamin K 1 ) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4‐dihydroxy‐2‐naphthoyl‐coa

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/1/TPJ_4972_sm_FigS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/2/TPJ_4972_sm_TableS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/3/TPJ_4972_sm_FigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/4/TPJ_4972_sm_TableS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/5/TPJ_4972_sm_FigS6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/6/j.1365-313X.2012.04972.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/7/TPJ_4972_sm_FigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/8/TPJ_4972_sm_TableS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/9/TPJ_4972_sm_FigS5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/10/TPJ_4972_sm_TableS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/11/TPJ_4972_sm_FigS4.pd

    High kinetic inductance microwave resonators made by He-Beam assisted deposition of tungsten nanowires

    Get PDF
    We evaluate the performance of hybrid microwave resonators made by combining sputtered Nb thin films with Tungsten nanowires grown with a He-beam induced deposition technique. Depending on growth conditions, the nanowires have a typical width w [35 - 75] nm and thickness t [5 - 40] nm. We observe a high normal state resistance R [65 - 150] Ω / which together with a critical temperature T c [4 - 6] K ensures a high kinetic inductance making the resonator strongly nonlinear. Both lumped and coplanar waveguide resonators were fabricated and measured at low temperature exhibiting internal quality factors up to 3990 at 4.5 GHz in the few photon regime. Analyzing the wire length, temperature, and microwave power dependence, we extracted a kinetic inductance for the W nanowire of L K 15 pH / which is 250 times higher than the geometrical inductance, and a Kerr non-linearity as high as K W, He / 2 π = 200 ± 120 Hz / photon at 4.5 GHz. The nanowires made with the helium focused ion beam are thus versatile objects to engineer compact, high impedance, superconducting environments with a mask and resist free direct write process

    Automatic ROI detection and classification of the Achilles tendon ultrasound images

    Get PDF
    Ultrasound (US) imaging plays an important role in medical imaging technologies. It is widely used because of its ease of use and low cost compared to other imaging techniques. Specifically, ultrasound imaging is used in the detection of the Achilles Tendon (AT) pathologies as it detects important details. For example, US imaging is used for AT rupture that affects about 1 in 5,000 people worldwide. Decision support systems are important in medical imaging, as they assist radiologist in detecting probable diagnoses and lesions. The work presented in this paper concerns the development of a software application to detect changes in the AT ultrasound images and subsequently classify them into normal or abnormal. We propose an approach that fully automates the detection for the Region of Interest (ROI) in ultrasound AT images. The original image is divided into six blocks with 1 cm size in each direction. The blocks lie inside the vulnerable area considered as our ROI. The proposed system achieved an accuracy of 97.21%

    Exploring tandem ruthenium-catalyzed hydrogen transfer and SNAr chemistry

    Get PDF
    A hydrogen-transfer strategy for the catalytic functionalization of benzylic alcohols via electronic arene activation, accessing a diverse range of bespoke diaryl ethers and aryl amines in excellent isolated yields (38 examples, 70% average yield), is reported. Taking advantage of the hydrogen-transfer approach, the oxidation level of the functionalized products can be selected by judicious choice of simple and inexpensive additives

    Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems

    Get PDF
    We show that, even in the most favorable case, the motion of a small spherical tracer suspended in a fluid of the same density may differ from the corresponding motion of an ideal passive particle. We demonstrate furthermore how its dynamics may be applied to target trajectories in Hamiltonian systems.Comment: See home page http://lec.ugr.es/~julya

    Patterned Irradiation of YBa_2Cu_3O_(7-x) Thin Films

    Full text link
    We present a new experiment on YBa_2Cu_3O_{7-x} (YBCO) thin films using spatially resolved heavy ion irradiation. Structures consisting of a periodic array of strong and weak pinning channels were created with the help of metal masks. The channels formed an angle of +/-45 Deg with respect to the symmetry axis of the photolithographically patterned structures. Investigations of the anisotropic transport properties of these structures were performed. We found striking resemblance to guided vortex motion as it was observed in YBCO single crystals containing an array of unidirected twin boundaries. The use of two additional test bridges allowed to determine in parallel the resistivities of the irradiated and unirradiated parts as well as the respective current-voltage characteristics. These measurements provided the input parameters for a numerical simulation of the potential distribution of the Hall patterning. In contrast to the unidirected twin boundaries in our experiment both strong and weak pinning regions are spatially extended. The interfaces between unirradiated and irradiated regions therefore form a Bose-glass contact. The experimentally observed magnetic field dependence of the transverse voltage vanishes faster than expected from the numerical simulation and we interpret this as a hydrodynamical interaction between a Bose-glass phase and a vortex liquid.Comment: 7 pages, 8 Eps figures included. Submitted to PR
    • 

    corecore