196 research outputs found

    A meta-science for a global bioethics and biomedicine

    Get PDF
    Background: As suggested by Shook and Giordano, understanding and therefore addressing the urgent international governance issues around globalizing bio-medical/technology research and applications is limited by the perception of the underlying science. Methods: A philosophical methodology is used, based on novel and classical philosophical reflection upon existent literature, clinical wisdoms and narrative theory to discover a meta-science and telos of humankind for the development of a relevant and defendable global biomedical bioethics. Results: In this article, through pondering an integrative systems approach, I propose a biomedical model that may provide Western biomedicine with leadership and interesting insight into the unity beyond the artificial boundaries of its traditional divisions and the limit between physiological and pathological situations (health and disease). A unified biomedicine, as scientific foundation, might then provide the basis for dissolution of similar reflected boundaries within bioethics. A principled and communitarian cosmopolitan bioethics may then be synonymous with a recently proposed principled and communitarian cosmopolitan neuroethics based on a novel objective meta-ethics. In an attempt to help facilitate equal and inclusive participation in inter-, multi-, and transdisciplinary intercultural discourse regarding the aforementioned international governance issues, I offer: (1) a meta-science derived through considering the general behaviour of activity, plasticity and balance in biology and; (2) a novel thought framework to encourage and enhance the ability for self-evaluation, self-criticism, and self-revision aimed at broadening perspective, as well as acknowledging and responding to the strengths and limitations of extant knowledge. Conclusions: Through classical philosophical reflection, I evolve a theory of medicine to discover a telos of humankind which in turn provides an ‘internal’ moral grounding for a proposed global biomedical bioethics

    On Quantifying Local Geometric Structures of Fiber Tracts

    Get PDF
    International audienceIn diffusion MRI, fiber tracts, represented by densely distributed 3D curves, can be estimated from diffusion weighted images using tractography. The spatial geometric structure of white matter fiber tracts is known to be complex in human brain, but it carries intrinsic information of human brain. In this paper, inspired by studies of liquid crystals, we propose tract-based director field analysis (tDFA) with total six rotationally invariant scalar indices to quantify local geometric structures of fiber tracts. The contributions of tDFA include: 1) We propose orientational order (OO) and orientational dispersion (OD) indices to quantify the degree of alignment and dispersion of fiber tracts; 2) We define the local orthogonal frame for a set of unoriented curves, which is proved to be a generalization of the Frenet frame defined for a single oriented curve; 3) With the local orthogonal frame, we propose splay, bend, and twist indices to quantify three types of orientational distortion of local fiber tracts, and a total distortion index to describe distortions of all three types. The proposed tDFA for fiber tracts is a generalization of the voxel-based DFA (vDFA) which was recently proposed for a spherical function field (i.e., an ODF field). To our knowledge, this is the first work to quantify orientational distortion (splay, bend, twist, and total distortion) of fiber tracts. Experiments show that the proposed scalar indices are useful descriptors of local geometric structures to visualize and analyze fiber tracts

    Deterministic diffusion fiber tracking improved by quantitative anisotropy

    Get PDF
    Diffusion MRI tractography has emerged as a useful and popular tool for mapping connections between brain regions. In this study, we examined the performance of quantitative anisotropy (QA) in facilitating deterministic fiber tracking. Two phantom studies were conducted. The first phantom study examined the susceptibility of fractional anisotropy (FA), generalized factional anisotropy (GFA), and QA to various partial volume effects. The second phantom study examined the spatial resolution of the FA-aided, GFA-aided, and QA-aided tractographies. An in vivo study was conducted to track the arcuate fasciculus, and two neurosurgeons blind to the acquisition and analysis settings were invited to identify false tracks. The performance of QA in assisting fiber tracking was compared with FA, GFA, and anatomical information from T 1-weighted images. Our first phantom study showed that QA is less sensitive to the partial volume effects of crossing fibers and free water, suggesting that it is a robust index. The second phantom study showed that the QA-aided tractography has better resolution than the FA-aided and GFA-aided tractography. Our in vivo study further showed that the QA-aided tractography outperforms the FA-aided, GFA-aided, and anatomy-aided tractographies. In the shell scheme (HARDI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 30.7%, 32.6%, and 24.45% of the false tracks, respectively, while the QA-aided tractography has 16.2%. In the grid scheme (DSI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 12.3%, 9.0%, and 10.93% of the false tracks, respectively, while the QA-aided tractography has 4.43%. The QA-aided deterministic fiber tracking may assist fiber tracking studies and facilitate the advancement of human connectomics. © 2013 Yeh et al

    Chimpanzee (Pan troglodytes) Precentral Corticospinal System Asymmetry and Handedness: A Diffusion Magnetic Resonance Imaging Study

    Get PDF
    Most humans are right handed, and most humans exhibit left-right asymmetries of the precentral corticospinal system. Recent studies indicate that chimpanzees also show a population-level right-handed bias, although it is less strong than in humans.We used in vivo diffusion-weighted and T1-weighted magnetic resonance imaging (MRI) to study the relationship between the corticospinal tract (CST) and handedness in 36 adult female chimpanzees. Chimpanzees exhibited a hemispheric bias in fractional anisotropy (FA, left>right) and mean diffusivity (MD, right>left) of the CST, and the left CST was centered more posteriorly than the right. Handedness correlated with central sulcus depth, but not with FA or MD.These anatomical results are qualitatively similar to those reported in humans, despite the differences in handedness. The existence of a left>right FA, right>left MD bias in the corticospinal tract that does not correlate with handedness, a result also reported in some human studies, suggests that at least some of the structural asymmetries of the corticospinal system are not exclusively related to laterality of hand preference

    Automated Discrimination of Brain Pathological State Attending to Complex Structural Brain Network Properties: The Shiverer Mutant Mouse Case

    Get PDF
    Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbpshi/Mbpshi, n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6–100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers

    Altered Anatomical Network in Early Blindness Revealed by Diffusion Tensor Tractography

    Get PDF
    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. Diffusion MRI studies have revealed the efficient small-world properties and modular structure of the anatomical network in normal subjects. However, no previous study has used diffusion MRI to reveal changes in the brain anatomical network in early blindness. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 17 early blind subjects and 17 age- and gender-matched sighted controls. We established the existence of structural connections between any pair of the 90 cortical and sub-cortical regions using deterministic tractography. Compared with controls, early blind subjects showed a decreased degree of connectivity, a reduced global efficiency, and an increased characteristic path length in their brain anatomical network, especially in the visual cortex. Moreover, we revealed some regions with motor or somatosensory function have increased connections with other brain regions in the early blind, which suggested experience-dependent compensatory plasticity. This study is the first to show alterations in the topological properties of the anatomical network in early blindness. From the results, we suggest that analyzing the brain's anatomical network obtained using diffusion MRI data provides new insights into the understanding of the brain's re-organization in the specific population with early visual deprivation

    Measuring macroscopic brain connections in vivo

    Get PDF
    Decades of detailed anatomical tracer studies in non-human animals point to a rich and complex organization of long-range white matter connections in the brain. State-of-the art in vivo imaging techniques are striving to achieve a similar level of detail in humans, but multiple technical factors can limit their sensitivity and fidelity. In this review, we mostly focus on magnetic resonance imaging of the brain. We highlight some of the key challenges in analyzing and interpreting in vivo connectomics data, particularly in relation to what is known from classical neuroanatomy in laboratory animals. We further illustrate that, despite the challenges, in vivo imaging methods can be very powerful and provide information on connections that is not available by any other means

    Using high angular resolution diffusion imaging data to discriminate cortical regions

    Get PDF
    Brodmann's 100-year-old summary map has been widely used for cortical localization in neuroscience. There is a pressing need to update this map using non-invasive, high-resolution and reproducible data, in a way that captures individual variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This characterization of the signal variation as non-random and reproducible is the critical condition for successful cortical parcellation using HARDI data. This paper is a first step towards an individual cortex-wide map of grey matter microstructure, The gray/white matter and pial boundaries were identified on the high-resolution structural MRI images. Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each vertex point on the surface tessellation, the diffusion-weighted signal was extracted from each image in the HARDI data set at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support-vector machine classifier, trained on three distinct areas in repeat 1 achieved 80-82% correct classification of the same three areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with independent microstructural measures such as ex-vivo histology

    Bilateral effects of unilateral cerebellar lesions as detected by voxel based morphometry and diffusion imaging

    Get PDF
    Over the last decades, the importance of cerebellar processing for cortical functions has been acknowledged and consensus was reached on the strict functional and structural cortico-cerebellar interrelations. From an anatomical point of view strictly contralateral interconnections link the cerebellum to the cerebral cortex mainly through the middle and superior cerebellar peduncle. Diffusion MRI (dMRI) based tractography has already been applied to address cortico-cerebellar-cortical loops in healthy subjects and to detect diffusivity alteration patterns in patients with neurodegenerative pathologies of the cerebellum. In the present study we used dMRI-based tractography to determine the degree and pattern of pathological changes of cerebellar white matter microstructure in patients with focal cerebellar lesions. Diffusion imaging and high-resolution volumes were obtained in patients with left cerebellar lesions and in normal controls. Middle cerebellar peduncles and superior cerebellar peduncles were reconstructed by multi fiber diffusion tractography. From each tract, measures of microscopic damage were assessed, and despite the presence of unilateral lesions, bilateral diffusivity differences in white matter tracts were found comparing patients with normal controls. Consistently, bilateral alterations were also evidenced in specific brain regions linked to the cerebellum and involved in higher-level functions. This could be in line with the evidence that in the presence of unilateral cerebellar lesions, different cognitive functions can be affected and they are not strictly linked to the side of the cerebellar lesion

    Development Trends of White Matter Connectivity in the First Years of Life

    Get PDF
    The human brain is organized into a collection of interacting networks with specialized functions to support various cognitive functions. Recent research has reached a consensus that the brain manifests small-world topology, which implicates both global and local efficiency at minimal wiring costs, and also modular organization, which indicates functional segregation and specialization. However, the important questions of how and when the small-world topology and modular organization come into existence remain largely unanswered. Taking a graph theoretic approach, we attempt to shed light on this matter by an in vivo study, using diffusion tensor imaging based fiber tractography, on 39 healthy pediatric subjects with longitudinal data collected at average ages of 2 weeks, 1 year, and 2 years. Our results indicate that the small-world architecture exists at birth with efficiency that increases in later stages of development. In addition, we found that the networks are broad scale in nature, signifying the existence of pivotal connection hubs and resilience of the brain network to random and targeted attacks. We also observed, with development, that the brain network seems to evolve progressively from a local, predominantly proximity based, connectivity pattern to a more distributed, predominantly functional based, connectivity pattern. These observations suggest that the brain in the early years of life has relatively efficient systems that may solve similar information processing problems, but in divergent ways
    • …
    corecore