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Abstract. In diffusion MRI, fiber tracts, represented by densely dis-
tributed 3D curves, can be estimated from diffusion weighted images
using tractography. The spatial geometric structure of white matter
fiber tracts is known to be complex in human brain, but it carries in-
trinsic information of human brain. In this paper, inspired by studies
of liquid crystals, we propose tract-based director field analysis (tDFA)
with total six rotationally invariant scalar indices to quantify local ge-
ometric structures of fiber tracts. The contributions of tDFA include:
1) We propose orientational order (OO) and orientational dispersion
(OD) indices to quantify the degree of alignment and dispersion of fiber
tracts; 2) We define the local orthogonal frame for a set of unoriented
curves, which is proved to be a generalization of the Frenet frame de-
fined for a single oriented curve; 3) With the local orthogonal frame,
we propose splay, bend, and twist indices to quantify three types of
orientational distortion of local fiber tracts, and a total distortion in-
dex to describe distortions of all three types. The proposed tDFA for
fiber tracts is a generalization of the voxel-based DFA (vDFA) which
was recently proposed for a spherical function field (i.e., an ODF field).
To our knowledge, this is the first work to quantify orientational dis-
tortion (splay, bend, twist, and total distortion) of fiber tracts. Experi-
ments show that the proposed scalar indices are useful descriptors of
local geometric structures to visualize and analyze fiber tracts.

1 Introduction

Diffusion MRI (dMRI) provides a unique window to non-invasively reveal
anatomical connections (i.e., fiber tracts) and white matter tissue proper-
ties in human brain [3]. In dMRI, a typical processing pipeline before sta-
tistical analysis is: 1) fit a diffusion model (e.g., diffusion tensor imaging
(DTI) [2]) to measured diffusion signals in each voxel; 2) calculate various
voxel-wise scalar indices from the model parameters; 3) calculate local fiber
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directions in each voxel based on the model parameters, and then perform
tractography. Scalar indices from diffusion models in step 2 are to quan-
tify different tissue properties at different levels. For example, at the voxel
level, fractional anisotropy (FA), generalized FA, return-to-origin probabil-
ity, mean-squared displacement, and orientation dispersion index are in-
dices for tissue properties inside a single voxel in DTI, Q-ball imaging [11],
spherical polar Fourier imaging [6], NODDI [13], etc. At the local neighbor-
hood level, gradient norm [8], sheet probability index [10], and orientational
distortion [5] are indices for tissue properties within a local neighborhood.

Fiber tracts estimated by tractography are curves densely distributed in
the 3D space. The spatial geometric structure of fiber tracts is known to be
very complex in human brain [3]. In a local spatial region, typical geometric
structures of fiber tracts include splay (aka diverge, converge, or fanning),
bend, twist, crossing, kissing, etc. Grid and sheet structures were also re-
ported in some areas in human brain [12,10]. See Fig. 1 for a demonstration
of splay, bend, and twist of fiber tracts. Compared with various voxel-wise
indices, only a few tract-based indices have been proposed. Savadjiev et al.
[9] proposed the total dispersion index for each point in a tract. Curvature
and torsion based on the Frenet frame along the curve are two famous fea-
tures of a single tract [1,4]. However, the Frenet frame and its features are
not designed for a set of curves, thus they cannot quantify local geometric
structures of fiber tracts shown in Fig. 1.

Cheng et al. [5] proposed a framework called director field analysis (DFA)
to quantify orientational order, dispersion of spherical functions, and orien-
tational distortion (splay, bend, twist, and total distortion) of a spherical
function field at the local neighborhood level. Since the DFA in [5] was de-
veloped for a spherical function field, we call it as voxel based DFA (vDFA).
vDFA does not work for fiber tracts. In this paper, inspired by studies of
liquid crystals [7], we propose tract-based director field analysis (tDFA)
which generalizes vDFA in [5] to fiber tracts. tDFA is not proposed to re-
place vDFA, but adopts methods and concepts in vDFA to fiber tracts. In
tDFA, we define total 6 scalar indices at each point in fiber tracts, where
orientational order and dispersion quantify the alignment and dispersion of
fiber tracts, and splay, bend, twist and total orientational distortion quan-
tify local orientational distortion of fiber tracts. tDFA is applied directly on
fiber tracts after tractography. To our knowledge, this is the first work to
quantify orientational distortion of fiber tracts (i.e., splay, bend and twist).

2 Method

2.1 Directors, Oriented Curves and Unoriented Curves

A director, borrowed from studies of liquid crystals [7], is defined as a vector
v that is equivalent to its negative �v [5]. A director v can be represented
as a dyadic tensor vvT without sign ambiguity. A local fiber direction in a
voxel (i.e., a peak of the ODF in that voxel) is a director by definition. “Sign
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splay bend twist

Fig. 1: Demonstration of three types of distortions of fiber tracts.

ambiguity” also happens for fiber tracts. A fiber tract is mathematically a
differentiable curve in R3 with two endpoints. A differentiable curve can be
parameterized as an oriented curve C : [0;1] 7!R

3, where C(t) is differentiable
and C(0) and C(1) are two endpoints. If we set γ(t) =C(1� t) (i.e., inverse the
orientation of the curve), then γ : [0;1] 7! R

3 is a new parameterization with
the opposite orientation, i.e., γ(0) =C(1) and γ(1) =C(0). Note that these two
oriented curves actually represent the same unoriented curve in geometry,
however, for a point C(t) (i.e., γ(1� t)) in the curve, the two tangent vectors
in these two parameterization have opposite directions, i.e., TC(t) = �Tγ(1�t).
Thus, tangent vectors of fiber tracts are actually directors.

The sign ambiguity of fiber tracts is not a problem for some cases. For
example, the curvature and torsion do not change under the above two pa-
rameterization. However, it is indeed a crucial problem if we would like to
compare two tangent vectors. Thus, we will use tools of directors in [5] for
calculation to avoid this problem. The difference of two directors v1 and v2
in the director representation, denoted as Diffd , is Diffd(v1;v2) = s1v1� s2v2,
where si =�1 such that s1s2vT

1 v2 � 0 [5].

2.2 Orientational Order and Dispersion of Fiber Tracts

Considering a set of fiber tracts fCig which are curves densely distributed
in R3, for each point x 2Ci, inspired by liquid crystals [7,5], we define orien-
tational order index (OO) as

OO = ∑
y2Ω(x)

w(y;x)3(u1(y)T u1(x))2�1
2

; (1)

where y is a point in a curve C j in a spatial neighborhood Ω(x) of x,
u1(x) and u1(y) are unit norm tangent vectors of curves at x and y, w(y;x)
is a spatial weighting function (e.g., uniform or Gaussian weighting) and
∑y2Ω(x) w(y;x)= 1. See Fig. 2. We have OO2 [�0:5;1]. Then, we define the ori-
entational dispersion index (OD) as OD = 1�OO. Thus, OD2 [0;1:5]. If u1(y)
is parallel to u1(x), 8y2Ω(x), i.e., the least dispersion case, then OO= 1 and
OD = 0 at x. If u1(y) is orthogonal to u1(x), 8y 2 Ω(x), i.e., the most disper-
sion case, then OO=�0:5 and OD= 1:5 at x. Note that the sign ambiguity of
tangent vectors u1(y) and u1(x) dose not change the values of OO and OD. In
practice, we normally set Ωx as a ball centered at x with a radius r = 4mm,
considering typical isotropic voxel size of a DW image is 2mm. Note that the
total dispersion in [9] is defined as the mean of differences between tangent
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vectors in a circle and u1(x), while our definition of OD is inspired by the
order parameter in liquid crystals [7,5].

Fig. 2: Demonstration of tract-based
DFA at a point x, denoted as the red
point. We use tubes, instead of tradi-
tional arrows, to denote tangent vec-
tors because of the sign ambiguity
of the unoriented curves and tangent
vectors. Ωx is a local neighborhood of
x, denoted as the grey sphere. The yel-
low points are within Ωx, and their
tangent vectors are used to calculate
OO and OD, and construct the second
and third directors in the local orthog-
onal frame. The pink plane is the or-
thogonal plane of red director u1(x).
The red, green, and blue tubes are the
3 directors fu1(x);u2(x);u3(x)g in the
local orthogonal frame. The 6 purple
points fx�kuig alone these 3 directors
in the local orthogonal frame are used
to calculate the distortion indices.

2.3 Local Orthogonal Frame for a Set of Unoriented Curves

Curvature and torsion are typical features of a single curve based on the
Frenet frame [1]. However, the Frenet frame has several limitations: 1) It
requires a direction (i.e., orientation) of a curve; 2) It is defined only for a
single curve, not for a set of curves; 3) For a straight line, the Frenet frame
is not well defined because the curvature of straight lines is 0.

We propose a local orthogonal frame at each point x of fiber tracts. The
local orthogonal frame has three directors. The first director, denoted as
u1(x), is the tangent vector at x, and the other two directors are in the or-
thogonal plane of the first director. We project all tangent vectors of fiber
tracts in a local neighborhood Ωx of x onto the orthogonal plane, and define
the covariance matrix of the projected directors as

Qx = ∑
y2Ωx

w(y;x)u1;?(y)uT
1;?

(y); where u1;?(y) = u1(y)� (uT
1 (y)u1(x))u1(x): (2)

Then we set the second director u2(x) as the eigenvector associated with the
largest eigenvalue of Qx, i.e., the principal component in PCA. In this way,
u2(x) indicates the direction of the largest change of u1(x) in the orthogonal
plane. Then, the third director is the cross product of the first two directors.
See Fig. 2. We prove in Proposition 1 that when Ωx tends infinitesimally
small, the local orthogonal frame will converge to the Frenet frame.
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Proposition 1. Let fCig be a set of differentiable curves. Let x 2 C1 be a
point in C1, and u1(x) is the tangent vector at x in C1. Assume x is not a
crossing point. Given a local ball Ωx = fy j ky�xk � rg with a radius r, let
the constructed local orthogonal frame be fu1(x);u2(x);u3(x)g. For x 2C1, let
the Frenet frame be fu1(x);v2(x);v3(x)g. The vectors in two frames all have
unit norm. Then we have limr!0(u2(x)T v2(x))2 = 1, limr!0(u3(x)T v3(x))2 = 1.

2.4 Orientational Distortions (Splay, Bend, and Twist)

Based on distortion analysis of liquid crystals [7], there are 3 types of ori-
entational distortions as showed in Fig. 1. 1) splay: bending occurs perpen-
dicular to the director; 2) bend: bending is parallel to the director; 3) twist:
neighboring directors are rotated with respect to one another, rather than
aligned. Inspired by liquid crystals [7,5], after we obtain the local orthogonal
frame for each point in tracts, we define at each point three scalar indices
to describe the three types of local distortions, and a total distortion index:

Splay index: s =

s
(uT

2
∂u1

∂u2
)2+(uT

3
∂u1

∂u3
)2; (3)

Bend index: b =

s
(uT

2
∂u1

∂u1
)2 +(uT

3
∂u1

∂u1
)2; (4)

Twist index: t =

s
(uT

2
∂u1

∂u3
)2 +(uT

3
∂u1

∂u2
)2; (5)

Total distortion index: d =
p

s2+b2 + t2
; (6)

where ∂u1
∂ui

, i = 1;2;3, is the directional derivative of u1(x) along ui(x), i.e.,

∂u1

∂ui
�

Diffd(u1(x+ kui);u1(x� kui))

2k
; (7)

where k is small, and Diffd means the difference of two directors in the di-
rector representation [5]. See Section 2.1. Since the director field is not con-
tinuous in practice, we use an interpolation method to estimate u1(x+ kui)
and u1(x�kui) from local neighborhoods of x+kui and x�kui. Let z = x�kui,
then we estimate u1(z) from its neighborhood tangent directors of tracts:

u1(z) = argmin
u;λ

∑
y2I(z)

kλuuT �ws(y;z)wb(y;x)u1(y)uT
1 (y)k2

; (8)

where I(z) is a neighborhood of z, ws(y;z) = 1
Zky�zk2 , wb(y;x) is the bun-

dle probability weight, and Z is the normalization factor such that
∑y2I(z) ws(y;z)wb(y;z) = 1. we use the inverse distance weight so that if z
is a point in a tract, then ws = 1 and u1(z) is just the tangent vector of the
tract. It can be proved that the interpolated u1(z) is the actually the prin-
cipal eigenvector of ∑y2I(z) w(y;z)u1(y)uT

1 (y). We set I(z) (i.e., I(x� kui)) as a
ball with a radius of 2k, and k is normally set as 1mm, half of the typical



6 J. Cheng et al.

voxel size of 2mm. If one would like to calculate indices using all points y
from all fiber bundels, then wb(y;x) = 1 as a constant. If one would like to
calculate indices using points y only from the same fiber bundle as x, then
we may set wb(y;x) as a pre-determined probability of fiber clustering, or
we could simply set wb(y;x) = 1 only if the angle between u1(y) and u1(x) is
smaller than a threshold θ0 (e.g., 45�), and wb(y;x) = 0, otherwise. If there is
no specific mention, we set wb(y;x) = 1 only if the angle is smaller than 45�.

3 Experiments

Synthetic data experiments. We generated three synthetic fiber tracts
(splay, bend, and twist data) which demonstrate these three types of dis-
tortions, and then calculated the proposed scalar indices for each point in
the fiber tracts. These scalar indices were used to color the fiber tracts. See
Fig. 3. We omit OO, because OO = 1�OD. The first three rows in Fig. 3
show that the proposed splay, bend, and twist indices completely separate
these 3 datasets, where only one among these 3 values is non-zero in each
dataset. We also combined fiber tracts in splay and bend data, then calcu-
lated these indices using interpolation with points from all fiber bundles
and with points only from the same fiber bundle (angle threshold θ0 = 45�).
The last two rows in the figure show that in a crossing area, it is better to
use fiber tracts from the same bundle to calculate bundle specific distortion
indices. Note that increased OD happens in crossing areas, compared with
single bundle areas, and calculation of OD does not require an interpolation.

Real data experiments. We performed tractography on a publicly
available dataset with a single subject from DIPY (dipy.org).The data has
a single shell with b = 2000s/mm2 and 150 directions on the shell. The cor-
pus callosum (CC) was extracted based on diffusion ODF and deterministic
tracking. Then, all six indices were calculated from the fiber tracts of CC.
Fig. 4 shows the scalar indices as colors of tracts. In the right subfigure,
splay, bend, and twist values are set as red, green and blue color channels,
respectively. The bending areas of CC are mainly in green, which means
that the bend index is higher than slay and twist indices in those bending
areas. We can also see red (high splay values) in fanning areas of CC, and
blue (high twist values) when tracts are twisting in the 3D space.

4 Conclusion

We propose a unified mathematical framework called tract-based director
field analysis (tDFA) with six scalar indices to quantify local geometric
structure of fiber tracts. OD and OO are useful to quantify the degree of
alignment and dispersion of fiber tracts; The distortion indices (i.e., splay,
bend, twist and total distortion) demonstrate good sensitivity in both syn-
thetic datasets and a real dataset on CC. To our knowledge, this is the first
work to quantify orientational distortion (splay, bend, and twist) of fiber

dipy.org
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OD splay bend twist total distortion

splay
data

bend
data

twist
data

splay+bend
data, θ0 = 45�,

fibers in
the same bundle

splay+bend
data, wb = 1,

all fibers

Fig. 3: Synthetic datasets of fiber tracts. Each row is a set of fiber tracts. The
OD, splay, bend, twist and total distortion indices are used to color the fiber
tracts. Low/high values are in blue/red color. The last two rows are crossing
of bend and splay data with two interpolation strategies.

tracts. The proposed indices are rotationally invariant, because they are
calculated from intrinsic quantities (i.e., local orthogonal frames) of tracts.
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