65 research outputs found

    Molecular Investigation and Phylogeny of Species of the \u3ci\u3eAnaplasmataceae\u3c/i\u3e Infecting Animals and Ticks in Senegal

    Get PDF
    Background: Our study aimed to assess the diversity of the species of Anaplasmataceae in Senegal that infect animals and ticks in three areas: near Keur Momar Sarr (northern region), Dielmo and Diop (Sine Saloum, central region of Senegal), and in Casamance (southern region of Senegal). Methods: A total of 204 ticks and 433 blood samples were collected from ruminants, horses, donkeys and dogs. Ticks were identified morphologically and by molecular characterization targeting the 12S rRNA gene. Molecular characterization of species of Anaplasmataceae infecting Senegalese ticks and animals was conducted using the 23S rRNA, 16S rRNA, rpoB and groEL genes. Results: Ticks were identified as Rhipicephalus evertsi evertsi (84.3%), Hyalomma rufipes (8.3%), Hyalomma impeltatum (4.9%), R. bursa (1.5%) and R. muhsamae (0.9%). The overall prevalence of Anaplasmataceae infection in ticks was 0.9%, whereas 41.1% of the sampled animals were found infected by one of the species belonging to this family. We identified the pathogen Anaplasma ovis in 55.9% of sheep, A. marginale and A. centrale in 19.4% and 8.1%, respectively, of cattle, as well as a putative new species of Anaplasmataceae. Two Anaplasma species commonly infecting ruminants were identified. Anaplasma cf. platys, closely related to A. platys was identified in 19.8% of sheep, 27.7% of goats and 22.6% of cattle, whereas a putative new species, named here provisionally “Candidatus Anaplasma africae”, was identified in 3.7% of sheep, 10.3% of goats and 8.1% of cattle. Ehrlichia canis and Anaplasma platys were identified only from dogs sampled in the Keur Momar Sarr area. Ehrlichia canis was identified in 18.8% of dogs and two R. e. evertsi ticks removed from the same sheep. Anaplasma platys was identified in 15.6% of dogs. Neither of the dogs sampled from Casamance region nor the horses and donkeys sampled from Keur Momar Sarr area were found infected by an Anaplasmataceae species. Conclusions: This study presents a summary of Anaplasmataceae species that infect animals and ticks in three areas from the northern, central and southern regions of Senegal. To our knowledge, our findings demonstrate for the first time the presence of multiple Anaplasmataceae species that infect ticks and domestic animals in Senegal. We recorded two potentially new species commonly infecting ruminants named here provisionally as Anaplasma cf. platys and “Candidatus Anaplasma africae”. However, E. canis was the only species identified and amplified from ticks. None of the other Anaplasmataceae species identified in animals were identified in the tick species collected from animals

    Tropheryma whipplei in Fecal Samples from Children, Senegal

    Get PDF
    We tested fecal samples from 150 healthy children 2–10 years of age who lived in rural Senegal and found the prevalence of Tropheryma whipplei was 44%. Unique genotypes were associated with this bacterium. Our findings suggest that T. whipplei is emerging as a highly prevalent pathogen in sub-Saharan Africa

    К вопросу о становлении женского политического движения в России в начале XX века

    Get PDF
    Цель исследования: изучить и дать исторический анализ культурного наследия крымскотатарских деятелей в лице Шефики Гаспринской и других лидеров в области общественно-политической и культурной жизни, раскрыть влияние тюрко-мусульманской прогрессивной части социума на решение проблемы равноправного, независимого, полноценного развития мусульманки, в конце XIX – начале XX веков

    Rickettsia felis–associated Uneruptive Fever, Senegal

    Get PDF
    During November 2008–July 2009, we investigated the origin of unknown fever in Senegalese patients with a negative malaria test result, focusing on potential rickettsial infection. Using molecular tools, we found evidence for Rickettsia felis–associated illness in the initial days of infection in febrile Senegalese patients without malaria

    Numerical homogenization methods for parabolic monotone problems

    Get PDF
    In this paper we review various numerical homogenization methods for monotone parabolic problems with multiple scales. The spatial discretisation is based on finite element methods and the multiscale strategy relies on the heterogeneous multiscale method. The time discretization is performed by several classes of Runge-Kutta methods (strongly A-stable or explicit stabilized methods). We discuss the construction and the analysis of such methods for a range of problems, from linear parabolic problems to nonlinear monotone parabolic problems in the very general Lp(W1,p) setting. We also show that under appropriate assumptions, a computationally attractive linearized method can be constructed for nonlinear problems

    High Prevalence of Mansonella perstans Filariasis in Rural Senegal.

    Get PDF
    Large parts of African and American countries are colonized by Mansonella, a very common but poorly described filarial nematode. Bloodsucking flies of the genus Culicoides are suspected to be the vector of Mansonella perstans, but no study in Senegal has confirmed that Culicoides can transmit the parasite. Designed specific real-time quantitative polymerase chain reaction (qPCR) can be used to identify microfilaria in stained blood smears. This study was performed in July and December 2010 in the southeastern Senegal, which is known to be endemic for M. perstans. We analyzed 297 blood smears from febrile and afebrile resident people by qPCR. The global prevalence of M. perstans was approximately 14.5% in both febrile and afebrile individuals. The age group of > 30 years had the highest prevalence (22.0%). No Culicoides among 1,159 studied specimens was positive for M. perstans and its vector in Senegal still requires identification

    Coxiella burnetii in Humans and Ticks in Rural Senegal

    Get PDF
    Q fever is a zoonotic disease known since 1937. The disease may be severe, causing pneumonia, hepatitis and endocarditis. Q fever agent has been described as a possible biological weapon. Animals—especially domestic cows, goats and sheep—are considered reservoirs for this infection. They are capable of sustaining the infection for long periods and excreting viable bacteria, infecting other animals and, occasionally, humans. Here we studied the distribution of Q fever in a poorly studied region, Senegal. We studied the agent of Q fever both in ticks parasitizing domestic animals and in humans (antibodies in serum, bacteria in feces, saliva and milk). We found from the studied regions the bacterium is highly prevalent in rural Senegal. Up to 37.6% of five different and most prevalent tick species may carry the bacterium. Humans living in such areas, as other mammals, may occasionally excrete Q fever agent through feces and milk
    corecore