11 research outputs found

    Regulation of gene expression in the immune system and in virally-transformed cells

    Get PDF
    The correct development and functioning of the immune system is critical for the defence of the host organism against pathogens and cancers. V(D)J recombination generates diversity of immunoglobulin (Ig) and T cell receptor (TCR) genes by the regulated joining of variable (V), diversity (D) and joining (J) gene segments. Tissue-specific enhancers in the DNA genome activate these genes to undergo recombina-tion by triggering non-coding transcription through the recombining gene segments, following interaction with the respective promoters. How this is achieved is un-known. The specificity of enhancer/promoter interactions was examined using the murine Igλ chain locus. The transcription factors that bind to the three main promoters were identified by DNase I footprinting. Of these, a factor termed E47 was shown to interact with IRF4 by co-immunoprecipitation experiments. The importance of these interactions was confirmed by mutagenesis where it was shown that mutations of any of the binding sites in DNA for the transcription factors or mutations in the amino acids involved in protein-protein interactions decreased the rate of transcrip-tion. Together, these studies suggest that IRF4/E47 interactions may play a key role in triggering locus activation. RNA-Seq data from HPV-positive samples and cell lines were analysed to identify putative biomarkers for cervical cancer. Infection with HPVs is the main cause for cervical cancer accounting for 10-15% of cancer-related deaths in women world-wide. It is established that HPVs escape the immune response over decades to es-tablish tumorigenesis but the specific mechanism is unknown. Virus integration into the host genome and deregulation of several genes may play a key role in promot-ing cancer; of particular interest are those transcripts that form the “surfacesome”. Among these, particular interest was given to connexin 26 (Cx26), which is classified as cancer-predisposition gene and was found to be commonly down regulated in all samples analysed. Recombinant adenoviruses expressing the two HPV16 oncogenes were generated and employed to transduce HaCaT cells to analyse Cx26 mRNA and protein levels coupled with dye transfer assays to study the structural behaviour of connexins. The data presented showed that E6 and E7 alter Cx26 protein expression by relocating Cx26 within the cytoplasm from the membrane-bound form. This was confirmed in the dye transfer assay where cell-cell communications were los

    A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater

    Get PDF
    Wastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration. We found no major difference in SARS-CoV-2 and faecal indicator virus (crAssphage) recovery from wastewater samples (n = 46) using these methods, PEG slightly (albeit non-significantly), outperformed AS and IP for SARS-CoV-2 detection, as a higher genome copies per litre (gc/l) was recorded for a larger proportion of samples. Next generation sequencing of 8 paired samples revealed non-significant differences in the quality of data between AS and IP, though IP data quality was slightly better and less variable. A controlled experiment assessed the impact of wastewater suspended solids (turbidity; 0–400 NTU), surfactant load (0–200 mg/l), and storage temperature (5–20 °C) on viral recovery using the AS and IP methods. SARS-CoV-2 recoveries were >20% with AS and 0.05), whilst surfactant and storage temperature combined were significant negative correlates (p < 0.001 and p < 0.05, respectively). In conclusion, our results show that choice of methodology had small effect on viral recovery of SARS-CoV-2 and crAssphage in wastewater samples within this study. In contrast, sample turbidity, storage temperature, and surfactant load did affect viral recovery, highlighting the need for careful consideration of the viral concentration methodology used when working with wastewater samples

    Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year

    Get PDF
    BACKGROUND: Schools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England. METHODS: A total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools. RESULTS: We report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR. CONCLUSIONS: Passive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases

    Epstein-Barr Virus genome deletions in Epstein-Barr Virus-positive T/NK cell lymphoproliferative diseases

    Get PDF
    The main target cells for Epstein-Barr virus (EBV) infection and persistence are B lymphocytes, although T and NK cells can also become infected. In this paper, we characterize the EBV present in 21 pediatric and adult patients who were treated in France for a range of diseases that involve infection of T or NK cells. Of these 21 cases, 5 pediatric patients (21%) and 11 adult patients (52%) were of Caucasian origin. In about 30% of the cases, some of the EBV genomes contain a large deletion. The deletions are different in every patient but tend to cluster near the BART region of the viral genome. Detailed investigation of a family in which several members have persistent T or NK cell infection by EBV indicates that the virus genome deletions arise or are selected independently in each individual patient. Genome sequence polymorphisms in the EBV in these T or NK cell diseases reflect the geographic origin of the patient and not a distinct type of EBV (the 21 cases studied included examples of both type 1 and type 2 EBV infection). Using virus produced from type 1 or type 2 EBV genomes cloned in bacterial artificial chromosome (BAC) vectors, we demonstrate infection of T cells in cord blood from healthy donors. Our results are consistent with transient infection of some T cells being part of normal asymptomatic infection by EBV in young children. IMPORTANCE EBV contributes to several types of human cancer. Some cancers and nonmalignant lymphoproliferative diseases involving T or NK cells contain EBV. These diseases are relatively frequent in Japan and China and have been shown sometimes to have deletions in the EBV genome in the disease cells. We identify further examples of deletions within the EBV genome associated with T or NK cell diseases, and we provide evidence that the virus genomes with these deletions are most likely selected in the individual cases, rather than being transmitted between people during infection. We demonstrate EBV infection of cord blood T cells by highly characterized, cloned EBV genomes and suggest that transient infection of T cells may be part of normal asymptomatic infection by EBV in young children

    Managing a tourism destination as a viable complex system. The case of Arbatax Park

    No full text
    The aim of the paper is to propose a view of territory based on a systems perspective, in order to identify the levers on which to act to improve, particularly, a tourism destination value. The theoretical approach adopted herein is based on systems theory and, in particular, on the conceptualizations of the Viable Systems Approach (vSa). Starting from the definition of the elements that mostly effect the development of a specific territory, our contribution proposes an integrated approach to a tourism destination with the aim of enhancing the complex of resources that are included within a specific territory in order to increase its potential cultural value and viability. The focus is on the development of tourism in the Sardinia Region, where Arbatax Park represents a case study that offers interesting insights into the relevance of a shift in the territory perspective, specifically when the area is referred to as a tourism destination

    Comparison of metagenomic and targeted methods for sequencing human pathogenic viruses from wastewater

    No full text
    ABSTRACT Wastewater-based epidemiology is a powerful tool for monitoring the emergence and spread of viral pathogens at the population scale. Typical polymerase chain reaction (PCR)-based methods of quantitative and genomic monitoring of viruses in wastewater provide high sensitivity and specificity. However, these methods are limited to the surveillance of target viruses in a single assay and require prior knowledge of the target genome(s). Metagenomic sequencing methods may represent a target-agnostic approach to viral wastewater monitoring, allowing for the detection of a broad range of target viruses, including potentially novel and emerging pathogens. In this study, targeted and untargeted metagenomic sequencing methods were compared with tiled-PCR sequencing for the detection and genotyping of viral pathogens in wastewater samples. Deep shotgun metagenomic sequencing was unable to generate sufficient genome coverage of human pathogenic viruses for robust genomic epidemiology, with samples dominated by bacteria. Hybrid-capture enrichment of shotgun libraries for respiratory viruses led to significant increases in genome coverage for a range of targets. Tiled-PCR sequencing led to further improvements in genome coverage compared to hybrid capture for severe acute respiratory syndrome coronavirus 2, enterovirus D68, norovirus GII, and human adenovirus F41 in wastewater samples. In conclusion, untargeted shotgun sequencing was unsuitable for genomic monitoring of the low virus concentrations in wastewater samples analyzed in this study. Hybrid-capture enrichment represented a viable method for simultaneous genomic epidemiology of a range of viral pathogens, while tiled-PCR sequencing provided the optimal genome coverage for individual viruses with the minimum sequencing depth. IMPORTANCE Most public health initiatives that monitor viruses in wastewater have utilized quantitative polymerase chain reaction (PCR) and whole genome PCR sequencing, mirroring techniques used for viral epidemiology in individuals. These techniques require prior knowledge of the target viral genome and are limited to monitoring individual or small groups of viruses. Metagenomic sequencing may offer an alternative strategy for monitoring a broad spectrum of viruses in wastewater, including novel and emerging pathogens. In this study, while amplicon sequencing gave high viral genome coverage, untargeted shotgun sequencing of total nucleic acid samples was unable to detect human pathogenic viruses with enough sensitivity for use in genomic epidemiology. Enrichment of shotgun libraries for respiratory viruses using hybrid-capture technology provided genotypic information on a range of viruses simultaneously, indicating strong potential for wastewater surveillance. This type of targeted metagenomics could be used for monitoring diverse targets, such as pathogens or antimicrobial resistance genes, in environmental samples. </jats:sec

    Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year.

    Get PDF
    BackgroundSchools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England.MethodsA total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools.ResultsWe report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR.ConclusionsPassive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases

    Evaluation of variant calling algorithms for wastewater-based epidemiology using mixed populations of SARS-CoV-2 variants in synthetic and wastewater samples

    No full text
    AbstractWastewater-based epidemiology (WBE) has been used extensively throughout the COVID-19 pandemic to detect and monitor the spread and prevalence of SARS-CoV-2 and its variants. It has proven an excellent, complementary tool to clinical sequencing, supporting the insights gained and helping to make informed public health decisions. Consequently, many groups globally have developed bioinformatics pipelines to analyse sequencing data from wastewater. Accurate calling of mutations is critical in this process and in the assignment of circulating variants, yet, to date, the performance of variant-calling algorithms in wastewater samples has not been investigated. To address this, we compared the performance of six variant callers (VarScan, iVar, GATK, FreeBayes, LoFreq and BCFtools), used widely in bioinformatics pipelines, on 19 synthetic samples with known ratios of three different SARS-CoV-2 variants (Alpha, Beta and Delta), as well as 13 wastewater samples collected in London between the 15–18 December 2021. We used the fundamental parameters of recall (sensitivity) and precision (specificity) to confirm the presence of mutational profiles defining specific variants across the six variant callers.Our results show that BCFtools, FreeBayes and VarScan found the expected variants with higher precision and recall than GATK or iVar, although the latter identified more expected defining mutations than other callers. LoFreq gave the least reliable results due to the high number of false-positive mutations detected, resulting in lower precision. Similar results were obtained for both the synthetic and wastewater samples.</jats:p
    corecore