37 research outputs found

    Enhanced Inflammatory Potential of CD4(+) T-Cells That Lack Proteasome Immunosubunit Expression, in a T-Cell Transfer-Based Colitis Model

    Get PDF
    Proteasomes play a fundamental role in intracellular protein degradation and therewith regulate a variety of cellular processes. Exposure of cells to (pro)inflammatory cytokines upregulates the expression of three inducible catalytic proteasome subunits, the immunosubunits, which incorporate into newly assembled proteasome complexes and alter the catalytic activity of the cellular proteasome population. Single gene-deficient mice lacking one of the three immunosubunits are resistant to dextran sulfate sodium (DSS)-induced colitis development and, likewise, inhibition of one single immunosubunit protects mice against the development of DSS-induced colitis. The observed diminished disease susceptibility has been attributed to altered cytokine production and CD4+ T-cell differentiation in the absence of immunosubunits. To further test whether the catalytic activity conferred by immunosubunits plays an essential role in CD4+ T-cell function and to distinguish between the role of immunosubunits in effector T-cells versus inflamed tissue, we used a T-cell transfer-induced colitis model. NaĂŻve wt or immunosubunit-deficient CD4+ T-cells were adoptively transferred into RAG1-/- and immunosubunit-deficient RAG1-/- mice and colitis development was determined six weeks later. While immunosubunit expression in recipient mice had no effect on colitis development, transferred immunosubunit-deficient T- cells were more potent in inducing colitis and produced more proinflammatory IL17 than wt T-cells. Taken together, our data show that modifications in proteasome-mediated proteolysis in T-cells, conferred by lack of immunosubunit incorporation, do not attenuate but enhance CD4+ T-cell-induced inflammation

    Taxonomy of the order Mononegavirales : update 2016

    Get PDF
    In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)

    Taxonomy of the order Mononegavirales: update 2017.

    Get PDF
    In 2017, the order Mononegavirales was expanded by the inclusion of a total of 69 novel species. Five new rhabdovirus genera and one new nyamivirus genus were established to harbor 41 of these species, whereas the remaining new species were assigned to already established genera. Furthermore, non-Latinized binomial species names replaced all paramyxovirus and pneumovirus species names, thereby accomplishing application of binomial species names throughout the entire order. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)

    Less Bone Loss With Maraviroc- Versus Tenofovir-Containing Antiretroviral Therapy in the AIDS Clinical Trials Group A5303 Study

    Get PDF
    Background. There is a need to prevent or minimize bone loss associated with antiretroviral treatment (ART) initiation. We compared maraviroc (MVC)- to tenofovir disoproxil fumarate (TDF)–containing ART

    Type VI Secretion System Substrates Are Transferred and Reused among Sister Cells

    No full text
    Bacterial type VI secretion system (T6SS) is a nanomachine that works similarly to a speargun. Rapid contraction of a sling (sheath) drives a long shaft (Hcp) with a sharp tip and associated effectors through the target cell membrane. We show that the amount and composition of the tip regulates initiation of full-length sheath assembly and low amount of available Hcp decreases sheath length. Importantly, we show that both tip and Hcp are exchanged by T6SS among by-standing cells within minutes of initial cell-cell contact. The translocated proteins are reused for new T6SS assemblies suggesting that tip and Hcp reach the cytosol of target cells. The efficiency of protein translocation depends on precise aiming of T6SS at the target cells. This interbacterial protein complementation can support T6SS activity in sister cells with blocked protein synthesis and also allows cooperation between strains to increase their potential to kill competition. VIDEO ABSTRACT

    The type VI secretion system sheath assembles at the end distal from the membrane anchor

    No full text
    The bacterial Type VI secretion system (T6SS) delivers proteins into target cells using fast contraction of a long sheath anchored to the cell envelope and wrapped around an inner Hcp tube associated with the secreted proteins. Mechanisms of sheath assembly and length regulation are unclear. Here we study these processes using spheroplasts formed from ampicillin-treated Vibrio cholerae. We show that spheroplasts secrete Hcp and deliver T6SS substrates into neighbouring cells. Imaging of sheath dynamics shows that the sheath length correlates with the diameter of spheroplasts and may reach up to several micrometres. Analysis of sheath assembly after partial photobleaching shows that subunits are exclusively added to the sheath at the end that is distal from the baseplate and cell envelope attachment. We suggest that this mode of assembly is likely common for all phage-like contractile nanomachines, because of the conservation of the structures and connectivity of sheath subunits

    Identification of point mutations in the steroid sulfatase gene of three patients with X-linked ichthyosis

    No full text
    X-linked ichthyosis (XLI) is an inborn error of metabolism caused by steroid sulfatase (STS) deficiency. In more than 80% of XLI patients the enzyme deficiency is due to large deletions involving the entire STS gene and flanking sequences. However, some patients with the classical XLI phenotype and complete STS deficiency do not show any detectable deletions by Southern blot analysis using full-length STS cDNA as a probe. We have studied five unrelated patients who are such "nondeletion" mutants. Western blot analysis using anti-STS antibodies was performed on patients' fibroblast extracts and revealed absence of cross-reacting material. First-strand cDNA synthesis by reverse transcription from patients' RNA isolated from cultured fibroblasts and PCR amplification of overlapping segments of the entire STS polypeptide coding region were performed. Three point mutations were identified by chemical mismatch cleavage, sequenced by dideoxynucleotide chain-termination sequencing and confirmed by allele-specific oligonucleotide hybridization of the patients' genomic DNA. The mutations resulted in the substitution of a tryptophan for an arginine at codon 1319, changing a hydrophobic to a basic hydrophilic amino acid, the substitution of a cysteine for a tyrosine at codon 1542, potentially losing a disulfide bond, and the substitution of a serine for a leucine at codon 1237. These are the first point mutations to be documented in the STS gene and may allow insight into functionally important domains of the protein

    DNA Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and Reduces Fitness of Acinetobacter baylyi

    No full text
    Certain Gram-negative bacteria use the type VI secretion system (T6SS) to kill and lyse competing bacteria. Here, we show that the T6SS-dependent lysis of prey cells by the naturally competent Acinetobacter baylyi results in the extensive filamentation of a subpopulation of A. baylyi cells. Filamentation is dependent on the release of DNA from the prey and its uptake by the competence system. The analysis of A. baylyi transcriptome and the response of transcriptional reporters suggest that the uptake of DNA results in the upregulation of the SOS response, which often leads to cell-division arrest. Long-term competition between competent and non-competent strains shows that the strain lacking the DNA uptake machinery outcompetes the parental strain only in the presence of the T6SS-dependent lysis of prey cells. Our data suggest that the cost of the induced SOS response may drive the selection of tight regulation or the loss of DNA uptake in bacteria capable of lysing their competitors

    Subcellular localization of Type VI secretion system assembly in response to cell-cell contact

    Get PDF
    Bacteria require a number of systems, including the type VI secretion system (T6SS), for interbacterial competition and pathogenesis. The T6SS is a large nanomachine that can deliver toxins directly across membranes of proximal target cells. Since major reassembly of T6SS is necessary after each secretion event, accurate timing and localization of T6SS assembly can lower the cost of protein translocation. Although critically important, mechanisms underlying spatiotemporal regulation of T6SS assembly remain poorly understood. Here, we used super-resolution live-cell imaging to show that while Acinetobacter and Burkholderia thailandensis can assemble T6SS at any site, a significant subset of T6SS assemblies localizes precisely to the site of contact between neighboring bacteria. We identified a class of diverse, previously uncharacterized, periplasmic proteins required for this dynamic localization of T6SS to cell–cell contact (TslA). This precise localization is also dependent on the outer membrane porin OmpA. Our analysis links transmembrane communication to accurate timing and localization of T6SS assembly as well as uncovers a pathway allowing bacterial cells to respond to cell–cell contact during interbacterial competition

    The evolution of the type VI secretion system as a disintegration weapon

    Get PDF
    The type VI secretion system (T6SS) is a nanomachine used by many bacteria to drive a toxin-laden needle into other bacterial cells. Although the potential to influence bacterial competition is clear, the fitness impacts of wielding a T6SS are not well understood. Here we present a new agent-based model that enables detailed study of the evolutionary costs and benefits of T6SS weaponry during competition with other bacteria. Our model identifies a key problem with the T6SS. Because of its short range, T6SS activity becomes self-limiting, as dead cells accumulate in its way, forming "corpse barriers" that block further attacks. However, further exploration with the model presented a solution to this problem: if injected toxins can quickly lyse target cells in addition to killing them, the T6SS becomes a more effective weapon. We tested this prediction with single-cell analysis of combat between T6SS-wielding Acinetobacter baylyi and T6SS-sensitive Escherichia coli. As predicted, delivery of lytic toxins is highly effective, whereas nonlytic toxins leave large patches of E. coli alive. We then analyzed hundreds of bacterial species using published genomic data, which suggest that the great majority of T6SS-wielding species do indeed use lytic toxins, indicative of a general principle underlying weapon evolution. Our work suggests that, in the T6SS, bacteria have evolved a disintegration weapon whose effectiveness often rests upon the ability to break up competitors. Understanding the evolutionary function of bacterial weapons can help in the design of probiotics that can both establish well and eliminate problem species
    corecore