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Subcellular localization of Type VI secretion system
assembly in response to cell–cell contact
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Abstract

Bacteria require a number of systems, including the type VI secre-
tion system (T6SS), for interbacterial competition and pathogene-
sis. The T6SS is a large nanomachine that can deliver toxins
directly across membranes of proximal target cells. Since major
reassembly of T6SS is necessary after each secretion event, accu-
rate timing and localization of T6SS assembly can lower the cost of
protein translocation. Although critically important, mechanisms
underlying spatiotemporal regulation of T6SS assembly remain
poorly understood. Here, we used super-resolution live-cell imag-
ing to show that while Acinetobacter and Burkholderia thailandensis
can assemble T6SS at any site, a significant subset of T6SS assem-
blies localizes precisely to the site of contact between neighboring
bacteria. We identified a class of diverse, previously uncharacter-
ized, periplasmic proteins required for this dynamic localization of
T6SS to cell–cell contact (TslA). This precise localization is also
dependent on the outer membrane porin OmpA. Our analysis links
transmembrane communication to accurate timing and localiza-
tion of T6SS assembly as well as uncovers a pathway allowing
bacterial cells to respond to cell–cell contact during interbacterial
competition.
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Introduction

Microorganisms often co-exist in close contact with one another and

compete for limited resources. The mechanisms involved in compe-

tition can be contact independent or contact dependent. Contact-

independent competition relies on the secretion of antimicrobial

molecules into the environment (Michel-Briand & Baysse, 2002;

Cascales et al, 2007; Cornforth & Foster, 2013). Certain toxins may

be delivered into neighboring cells in a contact-dependent manner

by various secretion systems. Such secretion systems include

subtypes of the Type IV secretion systems (Souza et al, 2015; Sgro

et al, 2018, 2019), the Type V secretion system for contact-

dependent growth inhibition (Aoki et al, 2005, 2009; Garcia, 2018),

and the Type VI secretion system (T6SS) (Pukatzki et al, 2006).

T6SS is a widespread secretion system found in Gram-negative

bacteria that deliver effector proteins into the adjacent eukaryotic or

bacterial cells (Bingle et al, 2008; Durand et al, 2014; Russell et al,

2014a; Diniz et al, 2015; Hachani et al, 2016). The T6SS structurally

resembles an inverted contractile phage tail-like structure (Pukatzki

et al, 2007; Leiman et al, 2009; Basler et al, 2012; Wang et al, 2019).

T6SS assembly is initiated by the formation of a membrane complex

comprising TssL, TssM, and often TssJ proteins anchored to the cell

envelope (Ma et al, 2009, 2012; Aschtgen et al, 2010; Felisberto-

Rodrigues et al, 2011; Durand et al, 2012, 2015; Yin et al, 2019). A

baseplate complex composed of effector decorated VgrG/PAAR

spike and TssEFGK forms on the membrane complex and initiates

copolymerization of the contractile sheath (TssBC) and the inner

Hcp tube (Basler et al, 2012; Zoued et al, 2013; Kudryashev et al,

2015; Filloux & Freemont, 2016; Vettiger et al, 2017; Wang et al,

2017; Cherrak et al, 2018; Nazarov et al, 2018; Park et al, 2018).

Upon an unknown signal, the extended sheath contracts and propels

the inner Hcp tube, VgrG/PAAR, and effectors into the environment

or a neighboring cell (Basler et al, 2012; Szwedziak & Pilhofer,

2019). Upon sheath contraction, an ATPase ClpV or ClpB binds the

contracted sheath and unfolds the sheath subunits, allowing new

rounds of T6SS assembly (Bönemann et al, 2009; Pietrosiuk et al,

2011; Basler & Mekalanos, 2012; Basler et al, 2012; Kapitein et al,

2013; Förster et al, 2014; Brodmann et al, 2017).

Despite the conservation of its overall structure, the T6SS exhi-

bits diverse assembly dynamics in different bacterial species. In

some strains of Vibrio cholerae, an average of 2–5 T6SS structures

per cell are randomly assembled during exponential growth (Vet-

tiger et al, 2017; Lin et al, 2019). On the other hand, in Francisella

novicida, which requires T6SS to escape from macrophages, T6SS

assembly preferentially occurs at the bacterial cell pole (Brodmann
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et al, 2017). Similarly, the T6SS-5 of Burkholderia thailandensis,

which is required for formation of multinucleated giant cells, also

assembles at the cell pole (Schwarz et al, 2014). The biological

significance and the mechanism of this spatial and temporal regula-

tion are unknown.

Most studies of T6SS localization have been conducted on the

H1-T6SS from Pseudomonas aeruginosa. H1-T6SS assembles upon

T6SS attack from the neighboring cells or upon sensing membrane

damage (Basler et al, 2013; Ho et al, 2013; Kamal et al, 2020). This

response is regulated by phosphorylation of the T6SS component

Fha by PpkA kinase, a process reversed by the PppA phosphatase

(Mougous et al, 2007). This threonine phosphorylation pathway

uses a sensor module in the membrane consisting of TagQRST,

which activates PpkA through an unknown mechanism (Hsu et al,

2009; Casabona et al, 2013; Wang et al, 2019). In addition, a repres-

sor TagF has been shown to sequester Fha to repress T6SS assembly

in P. aeruginosa (Silverman et al, 2011; Lin et al, 2018). Indeed,

tagF deletion leads to T6SS activation independent of the presence

of TagQRST and PpkA (Silverman et al, 2011). Importantly, this

dynamic localization and repeated assembly of T6SS in P. aerugi-

nosa likely evolved to allow efficient killing of target cells (Basler

et al, 2013; Smith et al, 2020).

Recently, posttranslational regulation of T6SS has also been

reported in species like Agrobacterium tumefaciens and Serratia

marcescens. Interestingly, PpkA/PppA/Fha components are present,

while the sensor module TagQRST is absent in these species (Fritsch

et al, 2013; Lin et al, 2014; Gerc et al, 2015; Ostrowski et al, 2018).

However, in A. tumefaciens, TagF domain and PppA form a chimeric

protein and block T6SS assembly by interacting with Fha (Lin et al,

2014, 2018), while in S. marcescens TagF blocks the membrane

complex assembly (Ostrowski et al, 2018). In addition, in some organ-

isms, specialized peptidoglycan-modifying enzymes have been linked

to initiation of T6SS assembly. For example, the lytic transglycosylase

MltE in enteroaggregative Escherichia coli (EAEC) interacts with the

periplasmic domain of TssM, which stimulates MltE activity (Santin &

Cascales, 2017). Localized MltE-mediated peptidoglycan degradation

then allows membrane complex assembly by promoting TssM

oligomerization (Santin & Cascales, 2017). Similarly, in Acinetobacter,

an L, D-endopeptidase TagX is important for the T6SS activity, Hcp

secretion, and killing of prey cells (Weber et al, 2016; Ringel et al,

2017). Thus, while we have some insight into T6SS regulation, how

these mechanisms relate to precise spatial and temporal regulation of

assembly remains unclear.

Here, we used structured illumination microscopy (SIM) to inves-

tigate the subcellular localization of antibacterial T6SS in

gammaproteobacteria Acinetobacter baylyi and Acinetobacter

baumannii, as well as betaproteobacteria B. thailandensis. We iden-

tified two different modes of T6SS assembly in these species: one

localized to cell–cell contact sites and one contact independent.

Contact-dependent assembly is initiated by localized assembly of a

small sheath focus, which is later extended to a full-length sheath.

We further show that contact-dependent assembly depends on a

periplasmic protein that we name Type six secretion dynamic local-

ization protein A (TslA). Furthermore, our data suggest that the

outer membrane porin OmpA is important for contact-dependent

T6SS assembly, establishing a link between the outer membrane

and initiation of T6SS assembly in the periplasm.

Results

T6SS frequently assembles at the site of contact with a
neighboring cell

To gain insight into the mechanisms underlying T6SS assembly in

A. baylyi, we used 3D-structured illumination microscopy (SIM)

and followed localization of the sheath component TssB tagged with

superfolder GFP (TssB-sfGFP) (Fig 1A and Movie EV1). As previ-

ously observed (Ringel et al, 2017), the A. baylyi T6SS sheath poly-

merizes at a rate of 36 � 9 nm/s (n = 300). Sheaths assembled on

average in about 22 � 7 s (n = 63). The sheath often buckled right

before contraction, and contracted immediately after assembling

across the whole cell (Fig EV1A). Contracted sheaths were disas-

sembled in 65 � 22 s (n = 63). Interestingly, about 50% of sheaths

(156 of 300) contracted away from the baseplate (Fig EV1B), simi-

larly as previously reported in E. coli (Szwedziak & Pilhofer, 2019).

Importantly, higher resolution of 3D-SIM revealed that TssB-sfGFP

formed multiple small foci at the cell periphery (Fig 1A and C).

Additionally, in a dense population, where many cells are in close

contact with each other, about one third of sheaths

(33.48 � 2.09%, three biological replicates) were formed at the site

where the cell was in a close contact with an adjacent cell (Fig 1A

▸Figure 1. Super-resolution imaging of T6SS by 3D-SIM reveals the formation of sheath foci prior to sheath polymerization.

A Time-lapse 3D-SIM of T6SS assembly, contraction, and disassembly by visualizing TssB-sfGFP in A. baylyi. Yellow arrows indicate examples of contact-dependent T6SS
assembly pairs. A larger field of view is shown in the first field of Movie EV1.

B Scheme representing that contact-dependent and -independent T6SS assemblies occur within the cells in close contact with each other.
C Examples of two modes of T6SS assembly in A. baylyi revealed by 3D-SIM live-cell imaging. Upper panel: an example of contact-dependent T6SS dynamics indicated

by a green arrow; lower panel: an example of contact-independent T6SS dynamics indicated by an orange arrow.
D Violin plots showing the distribution of sheath polymerization speed for both modes of T6SS assemblies. A total of 300 assemblies (100 from each biological replicate;

3 biological replicates) were analyzed over at least 3 min at 5 s intervals. The central dash line indicates the median while the upper and lower dash lines indicate
the quartiles. Unpaired t-test was performed (ns, not significant).

E Time-lapse 3D-SIM imaging of sheath dynamics (TssB-sfGFP) in the absence of membrane complex protein TssM.
F Time-lapse 3D-SIM imaging of sheath dynamics (TssB-sfGFP) in the absence of TagX. Yellow arrows indicate examples of contact-dependent T6SS sheath foci pairs.

Larger field of view is shown as the first field of Movie EV2.
G Time-lapse 2D-SIM imaging of TssA and sheath dynamics. Imaging was performed on cells of the double-tagged strain (tssB-mCherry2 mNeonGreen-tssA) by 2D-SIM.

White arrow indicates an example of paired T6SS assembly. Larger field of view is shown as the first field of Movie EV3.

Data information: Scale bars and time intervals are indicated.
Source data are available online for this figure.
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and B). Moreover, the sheath foci at the cell–cell contact site often

appeared as “pairs” in both of the adjacent cells (Fig 1C, upper

panel). Importantly, full-length sheaths were often assembled from

sheath foci with a speed that was independent of the foci localiza-

tion (Fig 1D). In summary, 3D-SIM revealed that sheath assembly in

A. baylyi is a two-step process and that about one third of the

assembled T6SS localize to cell–cell contact sites while two thirds

are localized without a clear pattern.

Formation of sheath foci depends on membrane complex and
baseplate components but is independent of TssA and TagX

To further examine the formation of sheath foci, we analyzed TssB-

sfGFP localization in the absence of the membrane complex compo-

nents TssL and TssM, baseplate components TssK, TssF, and TssG,

as well as TssA and TagX, known to be required for efficient initia-

tion of T6SS assembly in A. baylyi (Weber et al, 2016; Ringel et al,

2017). Importantly, sheath foci were absent in tssL, tssM, tssK, tssF,

and tssG mutants, indicating that the membrane complex and base-

plate are crucial for their formation (Figs 1E and EV1C). On the

other hand, we observed stable sheath foci pairs at the cell–cell

contact site in the absence of tagX, despite a significant decrease in

the assembly of full-length sheaths (Fig 1F and Movie EV2).

TssA in A. baylyi was shown to be important for T6SS activity as

its deletion abolished the Hcp secretion (Weber et al, 2016). Inter-

estingly, in the absence of tssA, sheath foci were formed and local-

ized to the sites of cell–cell contact (Fig EV1C). To further elucidate

the role of TssA in assembly of sheath foci, we tagged TssA with

mNeonGreen and TssB with mCherry2 and followed their localiza-

tion using 2D-SIM. Similar to TssA in E. coli or V. cholerae (Santin

et al, 2018; Schneider et al, 2019), A. baylyi TssA colocalized with

the distal end of the polymerizing sheath until contraction (Fig 1G

and Movie EV3). Interestingly, we observed that TssA foci also

appeared as a pair at the site of contact between two adjacent cells

(Fig 1G) and thus localize similarly to sheath foci. In addition, TssA

foci formed repeatedly at the same site of cell–cell contact, suggest-

ing possible repeated T6SS assembly events at the same location

(Movie EV3). Taken together, our data suggest that formation of

sheath foci depends on assembled membrane complex and base-

plate, but is independent of TagX and TssA. In addition, the sheath

foci are likely interacting with TssA for a significant amount of time

before sheath polymerization starts.

Close proximity between cells is crucial for contact-dependent
assembly

Pseudomonas aeruginosa was previously shown to localize assem-

bly of H1-T6SS to the site of membrane damage and to engage in

rounds of spatially and temporally correlated T6SS assembly to

attack neighboring cells (Basler et al, 2013; Ho et al, 2013; Smith

et al, 2020). While localization of T6SS assembly in A. baylyi

resembles this correlated assembly to some extent, T6SS dynamics

in A. baylyi must be regulated by a different mechanism as the

A. baylyi genome lacks TagQRST and Fha/PpkA/PppA homologues.

Moreover, stable sheath foci occurred at cell–cell contact sites in

TagX mutant that mostly lack dynamic sheaths (Fig 1F), indicating

that A. baylyi cells respond to contact with, rather than attack from,

neighboring cells. To further test this, we mixed E. coli MG1655

with A. baylyi strain lacking all known effectors required for prey

killing. Previous study has shown that the absence of these effectors

in A. baylyi abolishes killing of E. coli while having no effect on

the frequency of T6SS assembly (Ringel et al, 2017). After 2 h of co-

incubation, we monitored TssB-sfGFP dynamics in A. baylyi,

finding that established sheath foci and subsequent assemblies of

full-length sheaths occurred at the site of contact with E. coli cells

(Fig 2A and Movie EV4). In addition, sheath foci at the contact site

with E. coli cells also formed in tagX deletion mutant (Fig 2B).

To investigate how the distance between neighboring cells affects

contact-dependent assembly, we determined sheath formation

dynamics in the A. baylyi BD4 strain, which produces more capsule

than A. baylyi ADP1 (Heidelberger et al, 1969; Juni & Janik, 1969;

Juni, 1972; Patel et al, 1975). Indeed, there were gaps (~220 nm)

between cells of A. baylyi BD4 while no such large gaps were detect-

able in A. baylyi ADP1 or BD4 mutants lacking galU, a factor

required for capsule production (Fig EV2A). The frequency of sheath

assembly in the A. baylyi BD4 was slightly lower (0.62 � 0.09

sheaths per cell per min, three biological replicates) than that in the

A. baylyi ADP1 strain (0.76 � 0.24 sheaths per cell per min; three

biological replicates). Importantly, we observed significant decrease

in assemblies of sheaths or sheath foci at the site of cell–cell contact

in A. baylyi BD4 (2.88 � 1.67%, three biological replicates, Fig 2C

and Movie EV5, left panel) or its DtagX mutant (Fig 2D). The

frequency of contact site sheath assembly was restored in the

A. baylyi BD4 galU mutant (32.96 � 0.32%, three biological repli-

cates; Fig EV2B and Movie EV5, right panel). Together, this shows

that capsule production prevents T6SS assembly specifically at the

contact sites and suggests that close contact between the outer

membranes of the neighboring cells may initiate T6SS assembly.

Periplasmic protein TslA is required for contact site assembly

Several genes in the A. baylyi T6SS gene cluster are poorly charac-

terized and their function is mostly unknown (Weber et al, 2016;

Ringel et al, 2017) (Fig 3A). To test if these genes are required for

T6SS assembly at the cell–cell contact site, we monitored TssB-

sfGFP localization using 3D-SIM in strains lacking T6SS components

tagN (ACIAD2682), tagF (ACIAD2683), ACIAD2685, ACIAD2693, or

ACIAD2698. The deletion of tagN, tagF, or ACIAD2698 resulted in

no significant change in frequency or localization of the sheath or

sheath foci. However, ACIAD2685 deletion greatly reduced the

frequency of full-length sheath assembly, although sheath foci still

localized to cell–cell contact sites (Fig EV3A).

Surprisingly, ACIAD2693 deletion, shown previously to lead to

~50% reduction in T6SS assembly rate (Ringel et al, 2017), abol-

ished T6SS assembly at the cell–cell contact sites as documented by

the lack of paired assemblies (Fig 3B and Movie EV6, left panel).

SIM imaging revealed that there were on average 0.31 � 0.03

sheath structures assembled per cell per min, which is less than

0.76 � 0.24 in the parental strain (Fig 3D; t-test, P = 0.0318). Out of

these assemblies, only 2.59 � 0.76% (three biological replicates)

potentially originated from sites of cell–cell contact (Fig 3B and D).

This is in contrast to ~ 33% of assemblies being localized to cell–cell

contact sites in the parental strain (Fig 3D; t-test, P < 0.0001). In

addition, almost no sheath foci localized at cell–cell contact sites in

cells lacking ACIAD2693 (Fig 3B). Moreover, the pairs of sheath foci

at the contact site between sister or prey cells were also absent in
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Figure 2. Close cell–cell contact is required for contact-dependent T6SS assembly.

A T6SS assembly in A. baylyi cells that are in contact with E. coli. T6SS+ A. baylyi cells lacking all known effectors (DEffectors tssB-sfGFP clpV-mCherry2) were mixed with
E. coli cells (MG1655 Ptac-mRuby3) and incubated on LB agar plate for 2 h before imaging. Yellow arrows indicate sheath foci that are formed at the contact site with
E. coli. An overlay of green and red fluorescence channels shown for time 0s; the time lapse for the green channel shown in grayscale. Larger field of view is shown as
the third field of Movie EV4.

B Stable sheath foci formation in A. baylyi cells that are in contact with E. coli. A. baylyi cells lacking TagX (DtagX tssB-sfGFP) were mixed well with cells of E. coli
(MG1655 Ptac-mRuby3) and incubated on an LB agar plate for at least 90 min before imaging. Yellow arrows indicate sheath foci that are stably present at the contact
site with E. coli. An overlay of green and red fluorescence channels shown for time 0s; the time lapse for the green channel shown in grayscale.

C Time-lapse 3D-SIM imaging of sheath dynamics (TssB-sfGFP) in capsulated A. baylyi BD4 cells. Larger field of view is shown as the first field of Movie EV5.
D Time-lapse 3D-SIM imaging of sheath dynamics (TssB-sfGFP) in capsulated A. baylyi BD4 cells lacking TagX.

Data information: Scale bars and time intervals are indicated.
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the double mutant lacking ACIAD2693 and tagX (Fig EV3B and C

and Movie EV7, left panel).

To exclude the possibility of a polar effect of ACIAD2693 deletion

on the expression of downstream genes, we ectopically expressed

ACIAD2693 from a neutral site on the chromosome under its native

promoter. Such ectopic expression fully restored the frequency of

sheath assembly (0.71 � 0.05 sheaths per cell per min, three biolog-

ical replicates) and the sheath assembly at the cell–cell contact sites

(36.38 � 4.84%, three biological replicates, Fig 3C and D and

Movie EV6, right panel). Similarly, the ectopic expression of

ACIAD2693 also restored the formation of localized sheath foci pairs

in DACIAD2693 DtagX (Fig EV3D and Movie EV7, right panel).

ACIAD2693 has a predicted N-terminal signal peptide with the

cleavage site between Ala22 and Ala23. C-terminal fusions of

ACIAD2693 to mNeonGreen or mCherry2 failed to complement the

deletion strain suggesting that fluorescent protein tags interfere with

either protein localization or function. Therefore, to determine the

subcellular localization of ACIAD2693, we performed immunofluores-

cence labeling using a rabbit primary antibody raised against the

periplasmic part of ACIAD2693 (GeneScript) and Alexa Fluor Plus 594-

labeled anti-rabbit secondary antibody (Invitrogen). This showed that

ACIAD2693 specifically localizes to the periphery of A. baylyi (Fig 3E).

Importantly, the deletion of the signal peptide led to a loss of peripheral

localization and a reduction in the contact-dependent sheath assembly

(4.22 � 0.49%, three biological replicates, Fig EV3E and F). Together,

our data suggest that ACIAD2693 is a periplasmic protein that is

required for contact-dependent T6SS assembly, and we renamed it to

Type six secretion dynamic localization protein A (TslA).

OmpA plays an important role in contact-dependent T6SS
assembly

The outer membrane (OM) of Gram-negative bacteria contains many

b-barrel proteins (OMPs), which are crucial for OM functions includ-

ing nutrient uptake, adhesion, and the stress response (Klebba &

Newton, 1998; Wimley, 2003; Laubacher & Ades, 2008; Cho et al,

2014; Heras et al, 2014). The assembly and integration of OMPs

requires the b-barrel assembly machinery (BAM) (Wu et al, 2005;

Sklar et al, 2007; Konovalova et al, 2017). To test if OMPs are involved

in T6SS assembly, we used SIM imaging to analyze TssB localization

in the absence of several OM-related proteins including non-essential

components of BAM complexes. Our data do not suggest that BamB,

BamC, or OmpH play a significant role in T6SS contact-dependent

assembly (Fig EV4A and Movie EV8). On the other hand, the absence

of BamE led to a slight reduction in overall assembly rate

(0.48 � 0.07 sheaths per cell per min) as well as contact-dependent

assembly frequency (28.94 � 3.85%, three biological replicates).

Interestingly, we observed a significant change in T6SS dynamics

in the absence of OmpA (Fig 4A and Movie EV9, left panel), one of

the most abundant OMPs in E. coli (Li et al, 2014). The frequency of

T6SS assembly was reduced to about one fourth in the absence of

OmpA (0.19 � 0.03 sheaths per cell per min in comparison to ~0.76

in parental strain) (Fig 4A and Movie EV9, left panel; Fig 3D; t-test,

P = 0.0141). Moreover, contact-dependent assembly decreased

from ~33% in the parental strain to 6.87 � 3.49% in the ompA dele-

tion strain (three biological replicates; Fig 3D; t-test, P = 0.0003).

Finally, formation of sheath foci at the site of cell–cell contact was

also decreased in the mutant lacking both OmpA and TagX (Fig 4B).

Ectopic expression of ompA restored the contact-dependent assem-

bly of T6SS and sheath foci thus excluding the possibility that ompA

deletion changed expression of the downstream genes

(29.50 � 2.63%, three biological replicates, Figs 3D and EV4B and

C, and Movie EV9, right panel).

As OmpA is non-covalently associated with peptidoglycan

(Reusch, 2012; Confer & Ayalew, 2013), we further tested if the

peptidoglycan-binding domain of OmpA is important for its role in

contact-dependent T6SS assembly. We mutated to alanine two

conserved residues (D273 and R288) that were shown to be essen-

tial for PG binding of OmpA (Park et al, 2012; Skerni�skyt _e et al,

2019). The D273A+R288A mutation indeed lowered the overall rate

of sheath assembly (0.27 � 0.05 sheaths per cell per min) as well as

contact-dependent assembly (12.42 � 2.82%, three biological repli-

cates; Fig 4C). However, it should be noted that an immunoblot

analysis revealed that these point mutations partially lowered OmpA

protein level in the cell lysate, indicating that PG binding may be

required for OmpA stability (Fig EV4D).

In summary, since the absence of several BAM complex proteins

has no effect on contact-dependent T6SS assembly, our data indicate

that it is OmpA itself, rather than an overall change in OM integrity,

that is important for T6SS assembly at the cell–cell contact site,

however, it remains unclear if binding of OmpA to PG is required

for this function.

Contact-dependent T6SS assembly in Acinetobacter baumannii

To test the generality of the observation of step-wise sheath assem-

bly and precise T6SS localization, we examined assembly of T6SS in

A. baumannii. The sequence alignment suggests that TslA homolog

in A. baumannii DSM30011 (Wilharm et al, 2013) or A118 (Merkier

& Centr�on, 2006; Ramirez et al, 2010) shares only 48% sequence

◀ Figure 3. A periplasmic protein, TslA, is important for contact-dependent T6SS assembly in A. baylyi.

A Main T6SS cluster of A. baylyi. Genes marked in yellow are encoding proteins with unknown functions.
B Time-lapse 3D-SIM imaging of sheath dynamics (TssB-sfGFP) in the absence of TslA. Larger field of view is shown as the third field of Movie EV6, left panel.
C Time-lapse 3D-SIM imaging of sheath dynamics (TssB-sfGFP) in DtslA strain with ectopically expressed tslA (tssB-sfGFP clpV-mCherry2 DtslA ampC::PtslA-tslA-Kan

R).
Larger field of view is shown as the first field of Movie EV6, right panel. Yellow arrows indicate examples of contact-dependent sheath assembly.

D The frequency of contact-dependent assembly (left panel) and number of assemblies per cell per min (right panel) in cells from different strains as indicated on X-
axis. Three biological replicates were performed for each strain. At least 500 cells were analyzed per replicate on 3D-SIM time-lapse imaging of sheath dynamics
(TssB-sfGFP) in 3-min period. Bar graph (left panel) and scatter dot plot (right panel) show mean � SD. Unpaired t-test was performed.

E Cellular localization of TslA in A. baylyi cells. Cells of the strain (tssB-sfGFP) were fixed by 2% paraformaldehyde and treated with GTE buffer, then probed with anti-
TslA antibodies, followed by incubation with secondary antibodies conjugated with Alexa Fluor Plus 594. Signals were detected using a widefield microscope. Phase
contrast, GFP, RFP, and merged images are shown (GFP: TssB; RFP: TslA).

Data information: Scale bars and time intervals are indicated.
Source data are available online for this figure.
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identity with TslA in A. baylyi (Appendix Fig S1A). This contrasts

with other structural T6SS components such as TssB and TssM that

are 87% and 84% identical, respectively. To test if A. baumannii

pre-assembles sheath foci at sites of cell–cell contact, we replaced

the native copy of TssB with TssB-msfGFP fusion in two strains of

A. baumannii, DSM30011 and A118, and monitored sheath dynam-

ics using 3D-SIM. We observed significant gaps between the cells,

possibly due to capsule production. To enhance cell–cell contact,

the sample was incubated at room temperature for at least 30 min

to enable growth of a microcolony. The analysis of TssB-msfGFP

A

2 μm

0s
∆ompA

10s 20s 30s 40s 50s

60s 70s 80s 90s 100s 110s

2 μm

0s 10s 20s 30s 40s 60s

∆ompA ∆tagX
B

2 μm

0s 10s 20s 30s 40s 50s

60s 70s 80s 90s 100s 110s

C ompAD273AR288A

Figure 4. Lack of outer membrane OmpA leads to reduction in both overall T6SS assembly as well as the contact-dependent T6SS assembly in A. baylyi.

A Time-lapse 3D-SIM imaging of sheath dynamics (TssB-sfGFP) in the absence of OmpA. Larger field of view is shown as the second field of Movie EV9, left panel.
B Time-lapse 3D-SIM imaging of sheath dynamics (TssB-sfGFP) in ompA- and tagX-negative A. baylyi strain.
C Time-lapse 3D-SIM imaging of sheath dynamics (TssB-sfGFP) in cells where OmpAD273AR288A was expressed.

Data information: Scale bars and time intervals are indicated.
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localization showed that both DSM30011 and A118 strains assem-

bled sheath foci at the cell periphery as well as at cell–cell contact

sites. In dense populations, 60.05 � 6.50% and 51.17 � 5.16% of

sheath assembly were at the cell–cell contact site in DSM30011 and

A118, respectively (three biological replicates, Figs 5A and EV5B,

and Appendix Fig S1B, and Movie EV10). Moreover, the deletion of

tslA in both strains led to a significant reduction in the frequency of

contact-dependent assembly (7.47 � 1.56% for DtslA in

A. baumannii DSM30011 and 6.64 � 1.71% for DtslA in

A. baumannii A118; three biological replicates) (Figs 5B and EV5C,

and Appendix Fig S1B). The ectopic expression of TslA restored the

frequency of contact-dependent assembly to the level observed in

the parental strains (55.62 � 2.38% for A. baumannii DSM30011

and 54.90 � 3.20% for A. baumannii A118; three biological repli-

cates) (Fig EV5A and D, and Appendix Fig S1B). Together, this indi-

cates that contact-dependent initiation of T6SS assembly is

conserved in Acinetobacter genus despite diversity in TslA

sequences.

Identification of contact-dependent assembly in Burkholderia
thailandensis

We searched for distantly related TslA-like proteins beyond the

Acinetobacter genus. Analysis of TslA by HHPred (Hildebrand et al,

2009; Zimmermann et al, 2018) suggested a potential presence of a

tetratricopeptide repeat-like (TPR) domain (Appendix Table S1). In

addition, Phyre2 (Kelley et al, 2015) predicted that TslA contains

several a-helices and a largely disordered C-terminal region

(Appendix Fig S1C). Moreover, TslA has an isoeletric point (pI)

higher than 9.5 (Appendix Table S2). We searched for potential

TslA-like proteins in other T6SS clusters using the following criteria:

(i) encoded upstream of tssBC and transcribed in the same direction;

(ii) predicted to contain N-terminal signal peptide or be a putative

lipoprotein; (iii) contain a TPR domain; and (iv) computed to have

a high pI (> 8.7). We identified 231 of 281 type i4b T6SSs that ful-

filled three of these four criteria in the SecRet6 database (Li et al,

2015) and thus potentially encoding a TslA-like protein, including

the TagM1 (BTH_I2965) from the B. thailandensis T6SS-1 gene clus-

ter (Appendix Fig S2, and Appendix Tables S2 and S3).

To be able to test whether B. thailandensis TagM1 functions

similarly to TslA in Acinetobacter, we first generated chromosomal

fusion of tssB1 to msfGFP. We observed no significant difference in

killing of E. coli prey cells by B. thailandensis TssB1-msfGFP fusion

strain compared to the parental strain, suggesting that the TssB1-

msfGFP is fully functional (Fig EV6A). Then, we followed the

dynamics of B. thailandensis T6SS-1 using live-cell SIM imaging

(Fig 5C and Movie EV11). We used both widefield fluorescence

microscopy and 3D-SIM to visualize the sheath dynamics. Unfortu-

nately, 3D-SIM caused significant bleaching and phototoxicity and

therefore only short-term imaging was possible in the SIM mode.

Therefore, for the analysis of sheath dynamics, we used widefield

fluorescence imaging (Fig EV6B). T6SS-1 sheaths assembled on

average in about 25 � 5 s and were disassembled upon contraction

over a timeframe of 22 � 5 s (n = 83). Notably, nearly half of the

analyzed cells had no sheath assembly during the entire imaging

period (150 s). For cells that showed active assembly within the

150 s period, the overall frequency of full-length T6SS sheath

assembly was 0.62 � 0.32 assemblies per cell per min (n = 1150).

Importantly, we observed sheath foci pairs forming at cell–cell

contact sites using 3D-SIM (453 sheath foci pairs in a total of 4583

cells). From these foci, occasionally the full-length T6SS sheath

assembly was initiated (Fig 5C). Even though the overall assembly

frequency is low, 3D-SIM revealed that 53.52 � 11.15% of the total

sheath assemblies are initiated from cell–cell contact site in dense

populations (three biological replicates).

Importantly, in the absence of TslA-like protein homolog TagM1,

T6SS assembly was almost abolished and killing of E. coli prey cells

was undetectable (Fig EV6C). Moreover, in the absence of TagM1,

small sheath foci were still present at the cell periphery, however,

only two contact-dependent foci pairs were detected in 3428 cells

(Fig 5D). The ectopically expressed tagM1 from a neutral site on the

chromosome under PS12 promoter could restore the WT-level T6SS

activity (0.63 � 0.31 assemblies per cell per min for T6SS-active

cells, n = 1452) (Fig EV6B). In addition, ectopic expression also

restored formation of T6SS sheath foci pairs at cell–cell contact sites

(655 sheath foci pairs in 3,541 cells) (Fig EV6D).

Overall, this suggests that T6SS-1 of B. thailandensis assembles

in response to cell–cell contact in a TagM1-dependent manner. This

also indicates that the mechanism of contact-dependent regulation

of T6SS assembly mediated by TslA-like proteins is conserved

across several Gram-negative bacterial species.

Discussion

Here, we have used high-speed super-resolution imaging of T6SS to

reveal the formation of small sheath foci, previously undetected by

standard widefield imaging techniques (Ringel et al, 2017). We spec-

ulate that these sheath foci likely represent a few sheath rings that

are assembled on a functional baseplate connected to the membrane

complex. We showed that the foci colocalize with TssA and can

extend to full-length sheaths with the help of TssA at the distal end

of the sheath. Interestingly, while formation of these sheath foci is

independent of TagX, initiation of polymerization of full-length

sheaths requires TagX. Importantly, high-resolution imaging of

dynamic sheaths indicates that about one third of T6SS assemblies

in A. baylyi ADP1 are localized very precisely to the site of contact

between neighboring cells (Fig 6A). It is unclear why A. baylyi cells

have two modes of assembly that might undergo distinct regulation;

however, it is possible that cells may switch between those two

modes in response to different environmental signals.

It is surprising that the sheath foci often stay for an extended

period of time without further polymerization into the full-length

sheath. The mechanism underlying this delayed polymerization and

its role is unclear. In V. cholerae and E. coli, a TssA protein is

required for sheath polymerization (Santin et al, 2018; Schneider

et al, 2019) and as we show here, TssA is also required for polymer-

ization of sheaths in A. baylyi. Interestingly, stable sheath foci can

colocalize with TssA, suggesting that the absence of TssA is unlikely

to be the reason for delayed polymerization. In V. cholerae, TagA

over-expression was shown to prevent sheath assembly (Schneider

et al, 2019), however, TagA is absent in A. baylyi. This delay in

sheath polymerization points to a regulatory mechanism, which

could be common among different T6SS clusters as the small sheath

foci are difficult to detect without using SIM and thus could have

been previously undetected. Indeed, we show that similar sheath
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Figure 5. Contact-dependent T6SS assembly in A. baumannii and B. thailandensis.

A Time-lapse 3D-SIM imaging of T6SS assembly, contraction, and disassembly by visualizing TssB-sfGFP in cells of A. baumannii DSM30011.
B Time-lapse 3D-SIM imaging of sheath dynamics (TssB-sfGFP) in the absence of TslA in A. baumannii DSM30011.
C Time-lapse 3D-SIM imaging of sheath dynamics (TssB1-sfGFP) of B. thailandensis E264.
D Time-lapse 3D-SIM imaging of sheath dynamics (TssB1-sfGFP) of B. thailandensis E264 in the absence of tagM1.

Data information: Yellow arrows indicate examples of contact-dependent sheath foci or paired sheath assemblies. Larger fields of view are shown as the first field of
Movie EV10 for A. baumannii and Movie EV11 for B. thailandensis, respectively. Scale bars and time intervals are indicated.
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foci are present during formation of the B. thailandensis T6SS-1,

where the delay of full-length assembly is even more pronounced.

Somewhat surprisingly, stable sheath foci formed also in the

absence of TagX, which was suggested to cleave peptidoglycan to

allow T6SS assembly in A. baylyi (Weber et al, 2016). In E. coli,

lytic transglycosylase MltE is required for membrane complex

assembly and thus T6SS function (Santin & Cascales, 2017). It

remains unclear how can TagX be specifically required for initiation

of sheath polymerization while being dispensable for formation of

the sheath foci, which require formation of the membrane complex

and baseplate.

Recently, another class of proteins interacting with TssA and

baseplate was identified. It was shown that TagB1 from Pseu-

domonas putida was recruited to baseplate by the TssA1 and stabi-

lized sheath polymerization (Bernal et al, 2021). Moreover,

P. putida T6SS-1 sheaths contracted immediately after full-length

assembly (Bernal et al, 2021). Interestingly, T6SS sheaths in

A. baylyi also contract immediately after assembly; however, the

T6SS cluster of A. baylyi lacks TagB1 homolog.

Interestingly, in contrast to the assembly of H1-T6SS in P. aerugi-

nosa shown to be triggered by membrane damage (Basler et al,

2013; Ho et al, 2013; Stolle et al, 2021), T6SS assembly in A. baylyi

TssM
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OmpA TslA
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Figure 6. Proposed model of contact-dependent T6SS assembly.

A In Acinetobacter and B. thailandensis, cells in close contact with other cells can initiate membrane complex formation followed by assembly of a few rings of T6SS
sheath at the site of contact, which later may continue to assembly of a full-length sheath. Several membrane complexes may form at the same contact site, which
can lead to multiple sheath assemblies at the same time.

B Cells sense contact with proximal cells through a cascade dependent on the presence of TslA and OmpA. Possible interaction of TslA with TssM triggers membrane
complex/baseplate assembly followed by the formation of a few sheath rings. TssA caps such sheath foci for further polymerization upon unknown signal. The Hcp
tube and VgrG spike along with effectors are propelled out of the cell during sheath contraction. The ATPase ClpV then disassembles the contracted sheath.
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is clearly independent of T6SS attacks from neighboring cells. First,

stable sheath foci pairs at cell–cell contact sites are formed in DtagX
mutant cells, where the assembly of the functional T6SS is almost

completely abolished. Second, sheath foci form at the contact site

with E. coli cells that are unable to trigger assembly of H1-T6SS in

P. aeruginosa (Ho et al, 2013). Therefore, we propose that a subset

of T6SS assembly in Acinetobacter is triggered by a close physical

contact between the membranes of neighboring cells. Indeed, we

observed that the cells of the capsulated A. baylyi BD4 strain that

were about 220 nm apart from each other lacked contact-dependent

T6SS assembly.

Importantly, our data show that TslA protein is required for posi-

tioning T6SS assembly to the cell–cell contact site. Bioinformatic anal-

ysis and immunofluorescence-based localization suggest that TslA is

a periplasmic protein that contains several alpha helices with a large

disordered C-terminal region. Interestingly, we identified TslA-like

proteins exclusively in about 80% of subtype i4b T6SS clusters (Bar-

ret et al, 2011, 2013; Russell et al, 2014b; Li et al, 2015). T6SS clusters

encoding TslA-like protein were found in bacteria including Acineto-

bacter and Burkholderia species, Achromobacter xylosoxidans, and

Ralstonia solanacearum (Appendix Fig S2 and Appendix Table S3).

Indeed, we show that localization of B. thailandensis T6SS-1 to the

cell–cell contact sites is dependent on TslA-like protein TagM1

(Fig 5C and D). This suggests that precise T6SS aiming in response to

cell contact is widespread among bacteria with subtype i4b-T6SS.

Interestingly, previous studies indicated that TslA homolog in

A. baumannii interacts with TssM (Li et al, 2019). This would

suggest that TslA either recruits TssM to the site of contact with

neighboring cells or initiates TssM oligomerization (Fig 6B).

Here, we show that the outer membrane protein OmpA is

required for localized T6SS assembly. Since the BamB/C/E compo-

nents of BAM complex are dispensable for contact-dependent T6SS

assembly, we suggest that OmpA is specifically required for T6SS

positioning. In Acinetobacter, OmpA has been shown to play various

functions, including formation of biofilm on abiotic surface and

adhesion to host cells (Gaddy et al, 2009; Nie et al, 2020). In addi-

tion, OmpA on the surface of outer membrane vesicles (OMVs) is

important for the pathogenesis of A. baumannii because it induces

fragmentation of mitochondria in mammalian cells (Tiku et al,

2021). OmpA is surface exposed and thus could be involved in the

recognition of surface contact (Freudl et al, 1986; Confer & Ayalew,

2013). Indeed, the involvement of OmpA in the recognition of neigh-

boring cell surface has been demonstrated for F plasmid conjuga-

tion, where the outer membrane TraN interacts with OmpA on the

surface of the recipient cell for mating pair stabilization (MPS)

before conjugation pore forms (Klimke et al, 2005). Similarly, it is

possible that OmpA could sense cell–cell contact in A. baylyi and

signal this to TslA and thus initiate membrane complex assembly by

TslA–TssM interaction.

The unique assembly and mode of action of T6SS allow for physi-

cal puncturing of the target cell membrane and delivery of large

hydrophilic proteins across membranes of both bacterial and eukary-

otic cells (Shneider et al, 2013; Diniz & Coulthurst, 2015). However,

T6SS assembly is also apparently costly as it requires assembly,

refolding, and synthesis of hundreds of proteins to deliver just a few

effector proteins. During general interbacterial competition, random

assembly of T6SS seems wasteful, since T6SS toxins require direct

delivery to a neighboring cell. Cells that assemble their T6SS

randomly, fire their T6SS in all possible directions, and thus may

miss target cells in specific locations. P. aeruginosa has evolved a

mechanism to reduce the cost and increase efficiency of its T6SS

attack by sensing when and where an attack is being initiated from

(Basler et al, 2013). This allows P. aeruginosa to have all the compo-

nents ready in the cytosol and assemble the T6SS quickly and

directly toward the attacker (Smith et al, 2020). However, this mech-

anism requires that P. aeruginosa is able to withstand the initial

attack and only then fire its own H1-T6SS. On the other hand, the

mechanism that we describe here in A. baylyi, A. baumannii, and

B. thailandensis allows the bacteria to directly sense where the

neighboring cells are and to attack any prey cell with high precision.

Such targeted firing of T6SS increases overall efficiency and speed of

effector delivery into target cells and thus gives the attacking cells an

advantage during competition with other bacteria. It is possible that

certain bacteria could make this mechanism even more efficient by

specifically recognizing prey cells and thus reduce futile firing at

sister cells.

It remains to be tested what is the minimal distance between

surfaces of neighboring cells or how large such contact needs to be to

trigger contact-dependent T6SS assembly described here. We usually

detected only a single T6SS assembly at the cell–cell contact site and

only occasionally multiple assemblies were observed, however, it is

important to realize that the number of T6SS assemblies could be

limited within the cell, as the copy number of several T6SS compo-

nents is low (Lin et al, 2019). Therefore, it is possible that while the

surface of a cell–cell contact could accommodate multiple T6SS

assemblies, this is in fact limited due to lack of certain T6SS building

blocks. However, we cannot exclude that additional mechanisms play

a role in limiting T6SS assembly at the contact site.

We expect that high-resolution localization of T6SS assembly in

other bacteria under various conditions may unravel additional

intricate mechanisms of T6SS targeting. Indeed, recent advances in

live cell imaging revealed that bacteria spatially and temporally

regulate subcellular localization of a variety of molecules, however,

most studies have been focused on defined regions, such as a mid-

cell, a polar region, or regions associated with a nucleoid (Goehring

& Beckwith, 2005; Rudner & Losick, 2010; Gahlmann & Moerner,

2014; Laloux & Jacobs-Wagner, 2014). In this work, we reveal a

mechanism of localization of a complex nanomachine in response

to contact with another cell. Such precise positioning likely requires

temporal and spatial coordination of many regulatory proteins at

the membrane. Since many T6SS accessory proteins remain unchar-

acterized, we propose that some of these proteins might be required

for spatiotemporal regulation of T6SS assembly. We expect that

additional mechanisms of dynamic localization of T6SS will be iden-

tified in more bacteria and shown to play an important role in their

pathogenesis or ecology.

Materials and Methods

Strains and growth conditions

A list of strains used in this work can be found in

Appendix Table S4. Cells of A. baylyi, A. baumannii, B. thailanden-

sis, and E. coli were grown in Luria–Bertani (LB) media or on LB

plate containing 1.3–1.5% agar at 30 or 37°C unless stated
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otherwise. Antibiotic concentrations used were ampicillin (300 µg/

ml), streptomycin (50 µg/ml for liquid and 100 µg/ml for plate),

kanamycin (50 µg/ml), trimethoprim (200 µg/ml), chloramphenicol

(15 µg/ml), and gentamicin (15–30 µg/ml). Detailed information

on the full list of strains used is available in Appendix Table S4.

List of oligonucleotides used is available in Appendix Table S5.

Construction of A. baylyi, A. baumannii, and B. thailandensis
mutants

Chromosomal mutants of A. baylyi were constructed as described

(Metzgar et al, 2004; Ringel et al, 2017). The homologous regions

used were typically 500–600 bp in length. A strain ectopically

expressing tslA or ompA was constructed by fusing their own native

promoters with the gene nucleotide sequence and terminators

followed by the KanR gene. This sequence was then fused with the

flanking region of ampC for integration into the ampC locus (be-

tween 3,515,085 bp and 3,516,109 bp).

Chromosomal mutants of A. baumannii DSM30011 and A118

were constructed using allelic exchange with suicide vector

pGP704Sac-kan as described (Metzger et al, 2019; Vesel & Blokesch,

2021). The homologous flanking regions were between 500 and

900 bp. For conjugation, the donor E. coli S17-1 kpir containing

pGP704Sac-kan with desired flanking regions was inserted and

A. baumannii recipient cells were mixed at high density followed

by incubation at 37°C on LB agar plates for 6 h. The cell mixture

was then resuspended in LB and selected on LB agar containing

chloramphenicol (15 µg/ml) and kanamycin (50 µg/ml) with over-

night incubation at 37°C. Next, for the selection of second recombi-

nation events, the recombinant colonies were restreaked on LB agar

plates without salt and supplemented with 10% sucrose and incu-

bated at room temperature overnight. The desired mutation was

verified by colony PCR and sequencing. Strains ectopically express-

ing tslA were constructed by replacing the AraC-inducible system

with the native promoter of tslA followed by the tslA nucleotide

sequence on the Tn7-based integration vector pGP704-TnAraC

(Adams et al, 2019; Stutzmann & Blokesch, 2020). The integration

of such vectors into A. baumannii chromosome was achieved by

triparental mating mediated by E. coli S17-1 kpir with helper plas-

mid pUX-BF-13 (Bao et al, 1991) and selected on LB agar containing

chloramphenicol (15 µg/ml) and gentamicin (15 µg/ml) with over-

night incubation at 37°C.

Burkholderia thailandensis mutants were generated by allelic

exchange using the suicide vector, pDONRPEX18Tp-SceI-pheS (Fazli

et al, 2015). The homologous flanking regions were between 700

and 1,200 bp. For conjugation, the donor E. coli SM10 containing

pDONRPEX18Tp-SceI-pheS with desired flanking regions inserted

and B. thailandensis recipient cells were mixed at high density

followed by incubation at 37°C on no-salt LB agar plates for 5 h.

The cell mixture was then resuspended in LB and selected on LB

agar containing gentamycin (30 µg/ml) and trimethoprim (200 µg/

ml) with overnight incubation at 37°C. Integration of plasmid at

the desired location was confirmed by colony PCR. Next, for the

selection of second recombination events, the recombinant colonies

were regrown on M9 agar plates supplemented with 0.4% glucose

and 0.1% chloro-phenylalanine followed by a 2-day incubation at

37°C and two additional rounds of passage on such plates. The

desired mutation was verified by colony PCR and sequencing.

Strains ectopically expressing tagM1 were constructed by inserting

tagM1 nucleotide sequence fused to PS12 promoter (the Burkholderia

pseudomallei rpsL promoter) (Yu & Tsang, 2006) into the Tn7-based

integration vector pUC18T-mini-Tn7-Tp originated from pUC18T-

minTn7T; The integration of such vectors into B. thailandensis chro-

mosome was achieved by triparental mating mediated by E. coli

SM10 with helper plasmid pTNS2 (Choi et al, 2005). Cells were

selected on LB agar containing gentamycin (30 µg/ml) and trimetho-

prim (200 µg/ml) with overnight incubation at 37°C.

Bacterial interaction assay between B. thailandensis and E. coli

For investigating if the fusion of msfGFP to TssB has effect on its

T6SS function, we performed the b-galactosidase detection-based

assay using the conversion of color of cell impermeable substrate

chlorophenol red-b-D-galactopyranoside (CPRG) as readout as

previously described (Vettiger & Basler, 2016). B. thailandensis cells

and E. coli prey cells were grown in LB to reach an OD600 of ~ 1.

Both prey and predator strains were harvested and concentrated to

an OD600 of 10 and mixed in ratio of 10:1. For each mixture, 5 ll
was spotted on LB agar containing 20 lg/ml CPRG and 100 lM
isopropyl-b-D-thiogalactopyranoside (IPTG) and incubated at 37°C

for 3 h.

For following the lysis dynamics of the CPRG-based competition

assay, B. thailandensis cells were grown to reach an OD600 of ~ 1.

The E. coli prey cells were grown in LB containing 100 lM IPTG to

pre-induce the production of b-galactosidase. Both prey and preda-

tor strains were harvested and concentrated to an OD600 of 10 and

mixed in ratios as indicated. For each mixture, 3 ll was spotted on

LB agar containing 20 lg/ml CPRG and 100 lM IPTG in a flat-

bottom 96-well plate. The plate was then incubated at 30°C without

a lid in a Synergy H1M2 plate reader (BioTEK) for 10 h, while

measuring absorbance at 572 nm every 10 min.

Immunofluorescence

Acinetobacter baylyi cells were grown in LB to OD600 of 1.0 to 1.5.

Cells were then fixed with 2% paraformaldehyde in wells on

immunofluorescence slides (Polysciences) for 25 min, whose slide

wells were pre-incubated with 0.01% (v/v) poly-L-lysine (Sigma

Aldrich) for at least 1 h at room temperature followed by washing

with water and removal of excess liquid. The attached cells were

then washed three times with PBS followed by 20 min incubation in

Glucose–Tris–EDTA buffer. For localization of TslA in the absence

of signal peptide, the attached cells were additionally incubated in

Glucose–Tris–EDTA buffer containing 0.1–0.5% Triton X-100. Cells

were then blocked with PBS containing 3% BSA for another 20 min.

Staining was performed using a polyclonal rabbit antibody against

TslA (generated by GenScript, diluted 1:50) followed by secondary

antibody Goat anti-Rabbit IgG (H + L) Alexa Fluor Plus 594 (diluted

1:400). SlowFade Diamond Antifade Mountant (Thermo Fisher) was

applied before imaging. Bacterial cells were imaged using widefield

microscope as described below.

Widefield microscopy

The Nikon Ti-E inverted microscope equipped with Perfect Focus

System and Plan Apo 100x Oil Ph3 DM (NA 1.4) objective lens,
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SPECTRA X light engine (Lumencor), along with ET-GFP (Chroma

#49002) and ET-mCherry (Chroma #49008) filter set for fluores-

cence excitation, and filtration was used in this work. sCMOS

camera pco.edge 4.2 with pixel size of 65 nm (PCO) and VisiView

software (Visitron Systems) were used for imaging. Imaging was set

at 30°C with 95% humidity controlled by Okolab T-unit (Okolab).

Image analysis was conducted in Fiji (Schindelin et al, 2012) and

customized plugin based on StackReg 3D (Thevenaz et al, 1998;

Ringel et al, 2017).

Western blotting

For detection of OmpA, A. baylyi cells were grown in LB and

adjusted to OD600 of 1 in SDS loading buffer. Proteins from lysed

cells were separated on Mini-PROTEAN� Precast Gels (Bio-Rad) and

transferred to nitrocellulose membrane for immune detection.

Primary antibody against OmpA (generated by Genscript) was

added at concentration of 0.25 µg/ml in PBS buffer with 5% milk

containing 0.1% Tween 20 (PBST). Membrane was incubated for

1.5 h, followed by another 1.5 h incubation with PBST containing

horseradish peroxidase-labeled anti-rabbit antibody (Jackson Lab).

Peroxidase-labeled conjugates were detected by LumiGLO Chemilu-

minescent Substrate (Seracare) on a Gel Imager (GE ImageQuant

LAS 4000).

Structured illumination microscopy (SIM)

Acinetobacter baylyi or A. baumannii cells were grown on a LB agar

plate at 30°C overnight; cells from about 0.5 cm2 were restreaked

and grown on a fresh LB agar plate at 37°C for 1.5–2 h. Cells were

then removed from the plate and resuspended in 30–50 ll of LB

medium to obtain high-density cell suspension (OD600 10–30). The

cell suspension was spotted onto a thin pad containing 1% agarose

in LB:PBS (1:2 ratio) mixture and covered with a coverslip. For

imaging of A. baumannii, the sample was additionally incubated at

room temperature for at least 30 min right before imaging to achieve

close cell–cell contact without accumulation of contracted (but not

disassembled) sheaths. For imaging of co-incubation of A. baylyi

and E. coli, both species were mixed in 1:1 ratio when resuspending

separate overnight cultures but otherwise grown and prepared for

imaging as described above for A. baylyi. B. thailandensis cells were

cultivated at 37°C in LB. After overnight cultivation, cells were

diluted in LB and grown for 3–4 h to an OD600nm of 0.8–1.2 before

concentrating to high density (OD600 10–20) in LB. Cell suspensions

were then spotted onto a thin pad containing 1% agarose in LB:PBS

(1:2 ratio) mixture and covered with a coverslip.

Image acquisition was performed using a DeltaVision OMX Blaze

(GE Healthcare) or OMX Flex (Cytiva) equipped with UltimateFocus

Hardware Autofocus module with Focus Assist and sCMOS cameras.

The 60×/1.42 NA Plan Apo N objective (Olympus) was used. The

488 and 568 nm excitation lasers were used. For time-lapse analy-

sis, acquisition was performed with 5 or 10 s intervals for at least

1 min. Immersion oil with refractive index 1.516 was used. For

TssB-sfGFP, a 488 nm laser power of 5–10% with 5–10 ms exposure

time was applied and 3D-SIM imaging was conducted. For 3D-SIM,

nine z-stacks with 125 nm per step were acquired. For TssB

and TssA co-imaging, 2D-SIM on OMX Flex was used; for TssB-

mCherry2, a 568 nm laser power of 10% with 20 ms exposure time

was applied; and for TssA-mNeonGreen, a 488 nm laser power of

10% with 30 ms exposure time was applied. Reconstruction was

performed using DeltaVision OMX softWoRx with Wiener filter

value set at 0.005 (DeltaVision OMX Blaze) or 0.001 (OMX Flex).

Pixel size after reconstruction is 40 nm. After reconstruction, a

maximal intensity projection through z was calculated and shown

for 3D-SIM. Quantification of T6SS sheath assembly speed in

A. baylyi was conducted in Fiji on time-lapse series using 3D-SIM

(every 5 s for 3–5 min). A total of 300 T6SS structures were

analyzed. Quantification of T6SS dynamic cycles was conducted in

Fiji on time-lapse series using 3D-SIM (every 5 s for 3–5 min). A

total of 63 T6SS structures with full cycle of polymerization,

contraction, and complete disassembly were analyzed. For quan-

tification of frequency of contact-dependent T6SS in A. baylyi and

A. baumannii, assemblies over the period of time-lapse series for 2–

3 min acquired by 3D-SIM were counted as either contact dependent

or contact independent. Fig 1B illustrated the criteria used for quan-

tification to differentiate between contact-dependent and contact-

independent T6SS assembly. At least 500 cells were analyzed for

each replicate. Three biological replicates were analyzed for each

strain. Statistical analysis was performed using unpaired t-test in

Prism GraphPad 8. Quantification of T6SS sheath assembly speed in

B. thailandensis was performed on time-lapse series (every 5 s for

2.5 min) acquired by widefield microcopy, with 83 structures with

full dynamic cycle were analyzed. Quantification of contact-

dependent T6SS sheath foci pair formation in B. thailandensis was

conducted on time-lapse series using 3D-SIM (every 5 s for 1–

2 min).

Bioinformatics analysis

Secondary structure prediction of proteins was performed using the

Phyre2 server (Kelley et al, 2015). Protein alignment was conducted

using MUSCLE alignment (Edgar, 2004; Madeira et al, 2019) and

visualized using JalView (Waterhouse et al, 2009). Subtype i4b

T6SS clusters were obtained from SecRet6 database (Li et al, 2015).

NCBI (NCBI Resource Coordinators, 2018), Uniprot (The UniProt

Consortium, 2019), SignalP 5.1 (Almagro Armenteros et al, 2019),

and HHpred (Söding, 2005; Hildebrand et al, 2009; Zimmermann

et al, 2018) were used to obtain DNA/protein sequences and predict

the presence of signal peptide, specific domains, and structural

motifs. Schematic representation of gene clusters was performed

using Gene Graphics web application (Harrison et al, 2018).

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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