36 research outputs found

    Halogen bonding interactions with the [Mo3S7Cl6]2-cluster anion in the mixed valence salt [EDT-TTFI2]4[Mo3S7Cl6]oCH3CN

    Get PDF
    Electrocrystallization of iodinated TTF molecules in presence of trinuclear [Mo3S7Cl6]2- cluster anions provides the first example of radical salts with halogen bonding interactions at the organic/inorganic interfac

    Decoding the Components of Dynamics in Three-Domain Proteins

    Get PDF
    In this study we examine the feasibility and limitations of describing the motional behavior of three-domain proteins in which the domains are linearly connected. In addition to attempting a determination of both the internal and overall re-orientational correlation times, we investigate the existence of correlations in the motions between the three domains. Since in linearly arranged three-domain proteins there are typically no experimental data that can directly report on motional correlation between the first and third domain, we address this question by dynamics simulations. Two limiting cases occur: 1) for weak repulsive potentials and 2) when strong repulsive potentials are applied between sequential domains. The motions of the first and third domains become correlated in the case of strong inter-domain repulsive potentials when these potentials do not allow the angle between the sequential domains to be smaller than about 60°. Although various modeling approaches are available, we chose to use the model-free and extended model-free formalisms of Lipari and Szabo due to their widespread application in the study of protein dynamics. We find that the motional behavior can be separated into two components; the first component represents the concerted overall motion of the three domains, and the second describes the independent component of the motion of each individual domain. We find that this division of the motional behavior of the protein is maintained only when their timescales are distinct and can be made when the angles between sequential domains remain between 60° and 160°. In this work, we identify and quantify inter-domain motional correlations

    The Effects of Dietary Carotenoid Supplementation and Retinal Carotenoid Accumulation on Vision-Mediated Foraging in the House Finch

    Get PDF
    BACKGROUND: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus), we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full) and dimmer low-contrast (red-filtered) lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5-1.5 µg/retina), but declined among birds with very high levels (>2.0 µg/retina). CONCLUSION/SIGNIFICANCE: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific behavioral tasks and light environments

    Cold-acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of <it>Colobanthus quitensis</it> Kunt Bartl (Cariophyllaceae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecotypes of <it>Colobanthus quitensis</it> Kunt Bartl (Cariophyllaceae) from Andes Mountains and Maritime Antarctic grow under contrasting photoinhibitory conditions, reaching differential cold tolerance upon cold acclimation. Photoinhibition depends on the extent of photodamage and recovery capability. We propose that cold acclimation increases resistance to low-temperature-induced photoinhibition, limiting photodamage and promoting recovery under cold. Therefore, the Antarctic ecotype (cold hardiest) should be less photoinhibited and have better recovery from low-temperature-induced photoinhibition than the Andean ecotype. Both ecotypes were exposed to cold induced photoinhibitory treatment (PhT). Photoinhibition and recovery of photosystem II (PSII) was followed by fluorescence, CO<sub>2</sub> exchange, and immunoblotting analyses.</p> <p>Results</p> <p>The same reduction (25%) in maximum PSII efficiency (Fv/Fm) was observed in both cold-acclimated (CA) and non-acclimated (NA) plants under PhT. A full recovery was observed in CA plants of both ecotypes under dark conditions, but CA Antarctic plants recover faster than the Andean ecotype.</p> <p>Under PhT, CA plants maintain their quantum yield of PSII, while NA plants reduced it strongly (50% and 73% for Andean and Antarctic plants respectively). Cold acclimation induced the maintenance of PsaA and Cyt <it>b6/f</it> and reduced a 41% the excitation pressure in Antarctic plants, exhibiting the lowest level under PhT. xCold acclimation decreased significantly NPQs in both ecotypes, and reduced chlorophylls and D1 degradation in Andean plants under PhT.</p> <p>NA and CA plants were able to fully restore their normal photosynthesis, while CA Antarctic plants reached 50% higher photosynthetic rates after recovery, which was associated to electron fluxes maintenance under photoinhibitory conditions.</p> <p>Conclusions</p> <p>Cold acclimation has a greater importance on the recovery process than on limiting photodamage. Cold acclimation determined the kinetic and extent of recovery process under darkness in both <it>C. quitensis</it> ecotypes. The greater recovery of PSII at low temperature in the Antarctic ecotype was related with its ability to maintain PsaA, Cyt <it>b6/f</it> and D1 protein after photoinhibitory conditions. This is probably due to either a higher stability of these polypeptides or to the maintenance of their turnover upon cold acclimation. In both cases, it is associated to the maintenance of electron drainage from the intersystem pool, which maintains Q<sub>A</sub> more oxidized and may allow the synthesis of ATP and NADPH necessaries for the regeneration of ribulose 1,5-bisphosphate in the Calvin Cycle. This could be a key factor for <it>C. quitensis</it> success under the harsh conditions and the short growing period in the Maritime Antarctic.</p

    Seawater flocculation of clay-based mining tailings: Impact of calcium and magnesium precipitation

    No full text
    In areas where access to water of good quality is limited, the use of seawater in mineral processing can be an option. However, the dewatering of waste tailings is adversely affected, particularly when this follows processing at higher pH. The flocculation response of a synthetic clay-based tailings in seawater to different pH conditions was examined in detail, focusing on conditions promoting precipitation of the divalent cations present. Flocculated aggregate growth and breakage during turbine mixing were monitored in-situ in terms of chord length distributions (by focused beam reflectance measurement) and aggregate image capture, with the resultant hindered settling rates also determined. It was found that flocculation in seawater was substantially impaired at pH values greater than 10.3 due to the precipitation of magnesium species. The addition of the precipitated phase to the synthetic tailings increases both the surface area exposed to flocculant and the number of particles or micro-aggregates then needing further aggregation to attain acceptable settling rates. The direct use of seawater in processing operations without resorting to full desalination does not necessarily have detrimental impacts on tailings flocculation and thickening, provided the operation is conducted at a pH that prevents the precipitation of magnesium present within the process liquors.Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1160971 11171036 CONICYT PIA ACM 170005 CONICYT/PIA Project AFB180004 Centro CRHIAM Project Anid/Fondap/1513001

    Effect of Cholesterol on Membrane Fluidity and Association of Aβ Oligomers and Subsequent Neuronal Damage: A Double-Edged Sword

    No full text
    Background: The beta-amyloid peptide (Aβ) involved in Alzheimer’s disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by Aβ in cultured hippocampal neurons.Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-β-cyclodextrin (MβCD) and MβCD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively.Results: The results showed that cholesterol removal decreased the macroscopic association of Aβ to neuronal membranes (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p &lt; 0.05) and induced a facilitation of the membrane perforation by Aβ with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. MβCD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p &lt; 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p &lt; 0.001) and enhanced the association and clustering of Aβ (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p &lt; 0.01), but inhibited membrane disruption.Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of Aβ in hippocampal neurons, since fluidity can regulate distribution and insertion of the Aβ peptide in the neuronal membrane

    Effect of nitrogen supply and Rhizobia symbiosis in the isotopic composition of essential plant elements, nutrient content, TCA cycle activity and respiratory energy balance of Lotus japonicus

    No full text
    Resumen de la comunicación oral presentada en: I Spanish-Portuguese Congress on Beneficial Plant-Microbe Interactions (BeMiPlant) and XVIII National Meeting of the Spanish Society of Nitrogen Fixation (XVIII SEFIN). Oeiras, Portugal, 17-19 octubre (2022)This work was supported by FONDECYT No. 1191118 from National Agency for Research and Development (ANID) and the Chilean Scholarship Program/Becas de doctorado nacional/2017–21180329

    Image_3_Effect of Cholesterol on Membrane Fluidity and Association of Aβ Oligomers and Subsequent Neuronal Damage: A Double-Edged Sword.TIF

    No full text
    <p>Background: The beta-amyloid peptide (Aβ) involved in Alzheimer’s disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by Aβ in cultured hippocampal neurons.</p><p>Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-β-cyclodextrin (MβCD) and MβCD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively.</p><p>Results: The results showed that cholesterol removal decreased the macroscopic association of Aβ to neuronal membranes (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.05) and induced a facilitation of the membrane perforation by Aβ with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. MβCD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p < 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p < 0.001) and enhanced the association and clustering of Aβ (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.01), but inhibited membrane disruption.</p><p>Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of Aβ in hippocampal neurons, since fluidity can regulate distribution and insertion of the Aβ peptide in the neuronal membrane.</p

    Image_1_Effect of Cholesterol on Membrane Fluidity and Association of Aβ Oligomers and Subsequent Neuronal Damage: A Double-Edged Sword.TIF

    No full text
    <p>Background: The beta-amyloid peptide (Aβ) involved in Alzheimer’s disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by Aβ in cultured hippocampal neurons.</p><p>Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-β-cyclodextrin (MβCD) and MβCD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively.</p><p>Results: The results showed that cholesterol removal decreased the macroscopic association of Aβ to neuronal membranes (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.05) and induced a facilitation of the membrane perforation by Aβ with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. MβCD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p < 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p < 0.001) and enhanced the association and clustering of Aβ (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.01), but inhibited membrane disruption.</p><p>Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of Aβ in hippocampal neurons, since fluidity can regulate distribution and insertion of the Aβ peptide in the neuronal membrane.</p
    corecore