89 research outputs found

    Aeolianite and barrier dune construction spanning the last two glacial-interglacial cycles from the southern Cape coast, South Africa

    Get PDF
    The southern Cape region of South Africa has extensive coastal aeolianites and barrier dunes. Whilst previously reported, limited knowledge of their age has precluded an understanding of their relationship with the climatic and sea-level fluctuations that have taken place during the Late Quaternary. Sedimentological and geomorphological studies combined with an optical dating programme reveal aeolianite development and barrier dune construction spanning at least the last two glacial–interglacial cycles. Aeolianite deposition has occurred on the southern Cape coast at ca 67–80, 88–90, 104–128, 160–189 and >200 ka before the present. Using this and other published data coupled with a better understanding of Late Quaternary sea-level fluctuations and palaeocoastline configurations, it is concluded that these depositional phases appear to be controlled by interglacial and subsequent interstadial sea-level high stands. These marine transgressions and regressions allowed onshore carbonate-rich sediment movement and subsequent aeolian reworking to occur at similar points in the landscape on a number of occasions. The lack of carbonates in more recent dunes (Oxygen Isotope Stages 1/2 and 4/5) is attributed not to leaching but to changes to carbonate production in the sediment source area caused by increased terrigenous material and/or changes in the balance between the warm Agulhas and nutrient-rich Benguela ocean current

    Middle and Late Pleistocene environmental history of the Marsworth area, south-central England

    Get PDF
    To elucidate the Middle and Late Pleistocene environmental history of south-central England, we report the stratigraphy, sedimentology, palaeoecology and geochronology of some deposits near the foot of the Chiltern Hills scarp at Marsworth, Buckinghamshire. The Marsworth site is important because its sedimentary sequences contain a rich record of warm stages and cold stages, and it lies close to the Anglian glacial limit. Critical to its history are the origin and age of a brown pebbly silty clay (diamicton) previously interpreted as weathered till. The deposits described infill a river channel incised into chalk bedrock. They comprise clayey, silty and gravelly sediments, many containing locally derived chalk and some with molluscan, ostracod and vertebrate remains. Most of the deposits are readily attributed to periglacial and fluvial processes, and some are dated by optically stimulated luminescence to Marine Isotope Stage (MIS) 6. Although our sedimentological data do not discriminate between a glacial or periglacial interpretation of the diamicton, amino-acid dating of three molluscan taxa from beneath it indicates that it is younger than MIS 9 and older than MIS 5e. This makes a glacial interpretation unlikely, and we interpret the diamicton as a periglacial slope deposit. The Pleistocene history reconstructed for Marsworth identifies four key elements: (1) Anglian glaciation during MIS 12 closely approached Marsworth, introducing far-travelled pebbles such as Rhaxella chert and possibly some fine sand minerals into the area. (2) Interglacial environments inferred from fluvial sediments during MIS 7 varied from fully interglacial conditions during sub-stages 7e and 7c, cool temperate conditions during sub-stage 7b or 7a, temperate conditions similar to those today in central England towards the end of the interglacial, and cool temperate conditions during sub-stage 7a. (3) Periglacial activity during MIS 6 involved thermal contraction cracking, permafrost development, fracturing of chalk bedrock, fluvial activity, slopewash, mass movement and deposition of loess and coversand. (4) Fully interglacial conditions during sub-stage 5e led to renewed fluvial activity, soil formation and acidic weathering
    • …
    corecore