738 research outputs found

    The inexorable resistance of inertia determines the initial regime of drop coalescence

    Get PDF
    Drop coalescence is central to diverse processes involving dispersions of drops in industrial, engineering and scientific realms. During coalescence, two drops first touch and then merge as the liquid neck connecting them grows from initially microscopic scales to a size comparable to the drop diameters. The curvature of the interface is infinite at the point where the drops first make contact, and the flows that ensue as the two drops coalesce are intimately coupled to this singularity in the dynamics. Conventionally, this process has been thought to have just two dynamical regimes: a viscous and an inertial regime with a crossover region between them. We use experiments and simulations to reveal that a third regime, one that describes the initial dynamics of coalescence for all drop viscosities, has been missed. An argument based on force balance allows the construction of a new coalescence phase diagram

    Parental origin of the two additional haploid sets of chromosomes in an embryo with tetraploidy

    Full text link
    We report on the molecular investigations performed on an embryo with tetraploidy, karyotype 92,XXXY. The embryo was spontaneously aborted after eight weeks of gestation. Molecular analyses were performed in order to determine the parental origin and mode of formation of the two additional haploid sets of chromosomes. Microsatellite markers mapping to pericentromeric chromosome regions were used. Our results show a maternal origin of one additional set of chromosomes most likely due to the incorporation of the polar body of meiosis I and a paternal origin of the second additional set of chromosomes most likely due to dispermy. The karyotype 92,XXXY is rather unusual, indeed the vast majority of cases with tetraploidy have the karyotypes 92,XXXX or 92,XXYY. To the best of our knowledge this is the first case with 92,XXXY for which molecular investigations have been performed

    Initial maternal meiotic I error leading to the formation of a maternal i(2q) and a paternal i(2p) in a healthy male

    Full text link
    We report on the investigation of the parental origin and mode of formation of the two isochromosomes, i(2p) and i(2q), detected in a healthy adult male. Conventional cytogenetic analysis revealed the proband’s lack of structurally normal chromosomes 2, these being replaced by an i(2p) and an i(2q). Investigation of the parental origin of the isochromosomes revealed a paternal origin of the i(2p) chromosome and a maternal origin of the i(2q) chromosome. Thus, the formation of both isochromosomes, or at least of the paternal i(2p), appears to have occurred postzygotically. Interestingly, whilst a paternal isodisomy was observed for the entire 2p, maternal heterodisomy was detected for two segments of 2q, separated by a segment showing isodisomy. The results are indicative of an initial error (non-disjunction or i(2q) formation) concerning the maternal chromosomes 2 during meiosis I, which likely favored the subsequent mitotic recombination event resulting in the presence of two isochromosomes. To the best of our knowledge this is the first case of an initial meiotic error, followed by postzygotic trisomy rescue through the formation of isochromosomes, resulting in a normal phenotype. A prenatal detection, by cytogenetic and molecular analysis, of such chromosome abnormality would have led to the incorrect conclusion of a most likely poor prognosis for the fetus

    Self-similar rupture of thin films of power-law fluids on a substrate

    Get PDF
    Thinning and rupture of a thin film of a power-law fluid on a solid substrate under the balance between destabilizing van der Waals pressure and stabilizing capillary pressure is analysed. In a power-law fluid, viscosity is not constant but is proportional to the deformation rate raised to the n−1 role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3en−1n−1 power, where 00n=1n=1 for a Newtonian fluid). In the first part of the paper, use is made of the slenderness of the film and the lubrication approximation is applied to the equations of motion to derive a spatially one-dimensional nonlinear evolution equation for film thickness. The variation with time remaining until rupture of the film thickness, the lateral length scale, fluid velocity and viscosity is determined analytically and confirmed by numerical simulations for both line rupture and point rupture. The self-similarity of the numerically computed film profiles in the vicinity of the location where the film thickness is a minimum is demonstrated by rescaling of the transient profiles with the scales deduced from theory. It is then shown that, in contrast to films of Newtonian fluids undergoing rupture for which inertia is always negligible, inertia can become important during thinning of films of power-law fluids in certain situations. The critical conditions for which inertia becomes important and the lubrication approximation is no longer valid are determined analytically. In the second part of the paper, thinning and rupture of thin films of power-law fluids in situations when inertia is important are simulated by solving numerically the spatially two-dimensional, transient Cauchy momentum and continuity equations. It is shown that as such films continue to thin, a change of scaling occurs from a regime in which van der Waals, capillary and viscous forces are important to one where the dominant balance of forces is between van der Waals, capillary and inertial forces while viscous force is negligible

    Inertial impedance of coalescence during collision of liquid drops

    Get PDF
    The fluid dynamics of the collision and coalescence of liquid drops has intrigued scientists and engineers for more than a century owing to its ubiquitousness in nature, e.g. raindrop coalescence, and industrial applications, e.g. breaking of emulsions in the oil and gas industry. The complexity of the underlying dynamics, which includes occurrence of hydrodynamic singularities, has required study of the problem at different scales – macroscopic, mesoscopic and molecular – using stochastic and deterministic methods. In this work, a multi-scale, deterministic method is adopted to simulate the approach, collision, and eventual coalescence of two drops where the drops as well as the ambient fluid are incompressible, Newtonian fluids. The free boundary problem governing the dynamics consists of the Navier–Stokes system and associated initial and boundary conditions that have been augmented to account for the effects of disjoining pressure as the separation between the drops becomes of the order of a few hundred nanometres. This free boundary problem is solved by a Galerkin finite element-based algorithm. The interplay of inertial, viscous, capillary and van der Waals forces on the coalescence dynamics is investigated. It is shown that, in certain situations, because of inertia two drops that are driven together can first bounce before ultimately coalescing. This bounce delays coalescence and can result in the computed value of the film drainage time departing significantly from that predicted from existing scaling theories

    Characterization of Faecal Enterococci from Wild Birds in Turkey and Its Importance in Antimicrobial Resistance

    Get PDF
    ΔΕΝ ΔΙΑΤΙΘΕΤΑΙ ΠΕΡΙΛΗΨΗThis research aimed to investigate the diversity of faecal enterococci isolated from wild birds, to detecttheir antibiotic resistance patterns and to determine their distribution of genes related to vancomycin resistance. Additionally, to investigate their virulence factors that are important in the development of the disease. One hundred seven cloacal/rectal samples were inoculated onto Enterococcus Agar, and presumptive colonies were identified and confirmed by PCR. Multiplex PCR assays were used to screen vanA, vanB, vanC1 and vanC2/3. The virulence-related genes; ace, gelE, efa and agg were determined by PCR. Among the 103 enterococci, 62 E.faecalis, 23 E.faecium 3 E.gallinarum, 2 E.durans, 1 E.casseliflavus and 12 Enterococcus spp. were identified. Of the 103 enterococci, 26 were found to be resistant against to three or more antibiotics. The highest percentages were detected for chloramphenicol (52%), tetracycline (33%) and erythromycin (30%). Two E.gallinarum isolates were harboring three virulence factors, and one isolate was carrying a single virulence factor. There is no virulence factor in the E.casseliflavus isolate. Also, vanA and vanB genes were not found. Forty-two of 103 enterococci were harboring virulence factors, more frequently in E.faecalis. Forty-two enterococci carried efa A, 31 isolates carried gel E, and ace was found in 18 isolates. Virulence gene agg was not detected. When the results of the study were evaluated in general, multiple drug resistance was described as 25%. Considering the risk of polluting the water resources of wild animals, it is suggested that the continuity of this type of epidemiological study in wildlife animals is necessary. In conclusion, the wild birds may act as substantial reservoirs carrying antimicrobial resistance among enterococci and estimate the potential risk for man, pets and farm animals

    Compressive Response of Polycrystalline NiCoMnGa High-Temperature Meta-magnetic Shape Memory Alloys

    Get PDF
    The effects of the addition of quaternary element, Co, to polycrystalline NiMnGa alloys on their magnetic and shape memory properties have been investigated. NiCoMnGa polycrystalline alloys have been found to demonstrate good shape memory and superelasticity behavior under compression at temperatures greater than 100 °C with about 3% transformation strain and low-temperature hysteresis. It is also possible to train the material to demonstrate a large two-way shape memory effect

    Metal Insulator transition at B=0 in p-SiGe

    Full text link
    Observations are reported of a metal-insulator transition in a 2D hole gas in asymmetrically doped strained SiGe quantum wells. The metallic phase, which appears at low temperatures in these high mobility samples, is characterised by a resistivity that decreases exponentially with decreasing temperature. This behaviour, and the duality between resistivity and conductivity on the two sides of the transition, are very similar to that recently reported for high mobility Si-MOSFETs.Comment: 4 pages, REVTEX with 3 ps figure
    corecore