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The fluid dynamics of the collision and coalescence of liquid drops has intrigued scientists 
and engineers for more than a century owing to its ubiquitousness in nature, e.g. 
raindrop coalescence, and industrial applications, e.g. breaking of emulsions in the oil 
and gas industry. The complexity of the underlying dynamics, which includes occurrence 
of hydrodynamic singularities, has required study of the problem at different scales— 
macroscopic, mesoscopic and molecular—using stochastic and deterministic methods. 
In this work, a multiscale, deterministic method is adopted to simulate the approach, 
collision, and eventual coalescence of two drops where the drops as well as the ambient 
fluid are incompressible, Newtonian fluids. The free boundary problem governing the 
dynamics consists of the Navier-Stokes system and associated initial and boundary 
conditions that have been augmented to account for the effects of disjoining pressure 
as the separation between the drops becomes of the order of a few hundred nanometers. 
This free boundary problem is solved by a Galerkin finite element-based algorithm. The 
interplay of inertial, viscous, capillary, and van der Waals forces on the coalescence 
dynamics is investigated. It is shown that in certain situations, because of inertia two 
drops that are driven together can first bounce before ultimately coalescing. This bounce 
delays coalescence and can result in the computed value of the film drainage time to 
depart significantly from that predicted from existing scaling theories. 

1. Introduction 
Emulsions, which are fine dispersions of drops of one liquid in another liquid, are 

common to a variety of industries including food (Friberg et al. 2003), oil and gas 
(Kilpatrick 2012), pharmaceuticals (Heusch 1987), and chemicals (Moinard-Checot et al. 
2006). The competing processes of coalescence and breakup of the dispersed drops 
decide the fate, and thus, the final quality and properties of the emulsion. Due to 
the multiscale nature of this system, researchers have previously studied emulsions at 
macroscopic, mesoscopic and molecular scales using both deterministic and stochastic 
models (Gillespie 1975; Janssen & Anderson 2011). At the macroscopic level, population 
balance models have been employed to study the stability of emulsions and drop 
size distributions using semi-empirical models for drop collision rates and coalescence 
probabilities (Bajpai et al. 1976; Tobin et al. 1990; Taylor & Tavlarides 1994; Zhang 
et al. 1995; Hu et al. 2006). However, the dynamics of two drops approaching one 
another and possibly coalescing are studied separately by usually assuming little or 
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no influence from other drops and particles that are present in the emulsion. Such 
studies on coalescence of two drops can again be sub-categorized into two parts: (a) the 
pre-coalescence dynamics, consisting of the dynamics leading up to the contact of two 
drops and the occurrence of a space-time hydrodynamic singularity (see below), which 
is the subject of this paper, and (b) the post-coalescence dynamics, consisting of the 
dynamics following the contact between the two drops or in the immediate aftermath of 
the singularity (Eggers et al. 1999; Paulsen et al. 2012; Anthony 2017). For length scales 
below the continuum limit, coalescence of liquid drops has also been investigated using 
molecular dynamics simulations (Koplik et al. 2002; Zhao & Choi 2004). The limits of 
continuum mechanics and models for fluid flows, and transition to molecular scales, have 
been reviewed in detail by Hadjiconstantinou (2006). 

The pre-coalescence dynamics of a drop-pair consists of three steps. First, the two 
drops approach each other due to a driving force, which can be gravitational or 
buoyancy force among others, or due to an imposed flow of the external (also referred 
to as the exterior or outer or ambient) fluid. As the drops get closer, the thin film of 
the outer liquid that forms between the approaching drops begins to drain. Finally, once 
the film thickness falls below some critical value, van der Waals forces of attraction 
destabilize and rupture the film, leading to coalescence of the drops (Chesters 1991). The 
parameters influencing this process, shown in figure 1, can be broadly categorized as: 
(a) fluid parameters (for Newtonian fluids, these include the densities of the inner and 
outer liquids ρ1 and ρ2, their respective viscosities µ1 and µ2, the surface or interfacial 
tension of the interface separating the two liquids σ, and the Hamaker constant AH 

for the system), (b) flow and geometric parameters (such as the radii R1 and R2 of 
the two drops, the strain rate of the imposed flow G, the strength of the electric field 
E driving the two drops together, and the offset of the approaching drops θ), and 
(c) interfacial rheological effects or interface parameters over and above the constant 
interfacial tension that is typically sufficient to characterize clean interfaces (such as 
surfactant concentration and/or charge distribution along the interface). Extensive 
experimental studies of flow-induced coalescence in the Stokes limit of two equal-sized 
drops in a four-roll Taylor mill setup (Taylor 1934) have been conducted by Leal and 
coworkers (Yang et al. 2001; Borrell et al. 2004; Leal 2004; Yoon et al. 2005; Hsu et al. 
2008). Through these experiments, these authors have observed that the dependence of 
drainage time t̃d — defined as the time elapsed between the instant when the center
to-center distance d̃ between the drops is twice their undeformed radius R to when the 
drops make contact — on the capillary number Ca in a head-on collision (as seen in 
figure 2(a)) can be described by the scaling relation t̃dG ∼ Cam. Here, G is the strain 
rate of the imposed compressional flow in the outer liquid and Ca ≡ µ2GR/σ, where µ2 

is the viscosity of the outer liquid. For large Ca or, equivalently, large drops of R > 27 
µm, Leal and coworkers have shown that m = 4/3, which agrees with the theoretically 
expected prediction for the drainage of a flat or a dimpled film (Frostad et al. 2013). 
For lower capillary numbers, the value of the exponent m lies in the range 1 < m < 4/3, 
as the drops are observed to remain virtually spherical until coalescence (Hsu et al. 2008). 

While experimental techniques provide insights into macroscopic features of drop coa
lescence, analytical and numerical methods are essential for understanding the drainage of 
the film between the drops and establishing the mechanisms that are involved. Davis and 
coworkers (Yiantsios & Davis 1991; Davis 1999) have focused on the drainage of the film 
for gravity-driven coalescence of drops, and made use of the lubrication approximation 
while solving the Navier-Stokes equations. Later, three-dimensional boundary integral 
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Figure 1. A cartoon of the three-dimensional space of parameters affecting the collision and 
coalescence of two drops. These parameters can be broadly categorized as (a) fluid parameters 
or properties, (b) flow and geometric parameters, and (c) interface parameters or properties. 
For illustration purposes, surfactant molecules are shown to populate the interface of the drop 
of radius R2. 

methods were used by Rother et al. (1997), Zinchenko et al. (1997), and Rother & Davis 
(2001) to study the effect of local deformations on two drops colliding in linear flows. 
Yue et al. (2005) used diffuse interface methods to study the coalescence dynamics of 
drops imparted with initial velocities directed at each other. Loewenberg and coworkers 
(Nemer et al. 2004, 2007) showed that the external flow field affects the flow inside 
the drops which could arrest film drainage and as a result prevent coalescence, thereby 
demonstrating the contrast between drops coalescing due to an external flow field and 
drops pushed together by body forces in a quiescent fluid. Janssen et al. (2006) and 
Yoon et al. (2007) derived simple scaling relations for the scaled drainage time t̃dG with 
Ca and observed good agreement for scaling behavior of drainage times between their 
boundary integral simulations and the experiments conducted by Leal and coworkers for 
large Ca. Recently, Nemer et al. (2013) derived scaling relationships for the variation 
of film thickness with time when the drops undergo small deformations. More recently, 
Ramachandran & Leal (2016) examined the impact of interfacial slip on scaling exponents 
for film drainage times in an effort to resolve discrepancies in experimentally observed 
trends and simple scaling theories for smaller Ca. 

While these aforementioned works have focused on highly viscous systems such that 
their dynamics lie in the Stokes regime, the hydrodynamics of the coalescence of slightly 
to moderately viscous systems such as water-oil emulsions may not conform to the 
assumptions of Stokes flow and hence require accounting for inertial effects. Controlled 
experiments on colliding liquid drops surrounded by a second liquid when inertia is 
non-negligible or at finite Reynolds number Re are currently lacking. Moreover, previous 
computational works that have considered inertial effects (Nobari et al. 1996) have 
not captured well the actual drainage and rupture dynamics of the film leading to 
coalescence. Indeed, it has proven challenging in previous computational studies to fully 
resolve the dynamics of the thin film separating two approaching drops given the multi-
scale nature of the problem. For example, Thomas et al. (2010) state that “These films 
can become very thin and in direct numerical simulations (DNS) it is often impractical 
to resolve their thickness fully, even with adaptive grid refining.” The need for including 



4 K. Sambath et al 

Figure 2. (a) Definition sketch for head-on collision of two equal-sized drops of a Newtonian 
liquid immersed in a second Newtonian liquid that are driven towards each other by a 
compressional flow similar to that in Taylor’s four-roll mill apparatus (Taylor 1934). (b) Sketch 
showing the problem domain corresponding to a quadrant of the (r̃, z̃)-plane and the key problem 
variables. 

inertial effects in modeling drop coalescence has eloquently been highlighted in a recent 
review article by Janssen & Anderson (2011). With the goal of accounting for inertial 
effects while accurately capturing the dynamics of interface rupture, we formulate and 
solve numerically in this paper the problem of the flow-induced approach, collision, and 
eventual coalescence of two drops in an outer liquid at finite Re. 

This paper is organized as follows. Section 2 describes in detail the problem being 
studied and summarizes the equations as well as the boundary and initial conditions 
that govern the dynamics of drop coalescence. Section 3 describes the computational 
methods employed to solve numerically the aforementioned equations and presents the 
results of validation tests conducted to verify the accuracy of these methods. Section 4 
presents the results obtained by solving the governing equations and examines the role 
that fluid inertia plays in causing two approaching drops to rebound and thereby result 
in an increase in film drainage times. Section 5 concludes the paper by summarizing the 
key results and discussing future avenues that can be explored by extending the current 
analyses. 

2. Mathematical formulation 

2.1. Governing equations and boundary and initial conditions 

The system consists of two initially spherical drops of equal radii R of an incompressible 
Newtonian liquid of constant density ρ1 and constant viscosity µ1, suspended in an 
immiscible, incompressible Newtonian liquid of constant density ρ2 and constant viscosity 
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µ2. The interfacial tension of the liquid-liquid interface is spatially uniform and constant 
in time and is denoted by σ, while the Hamaker constant for the liquid-liquid system 
AH is constant and positive, signifying that the force between the drops is attractive. 
The drops are initially separated by a center-to-center distance d̃(t̃ = 0) = αR, where t̃
is time and the constant 4 < α < ∞, and pushed towards each other by a compressional 
flow with a constant strain rate G, identical to that generated by a four-roll Taylor mill 
(Taylor 1934). It proves convenient to adopt a cylindrical coordinate system where the 
origin is located midway between the two drops along the line connecting their centers, 
r̃ and z̃ represent the radial and axial coordinates, and er and ez are the orthogonal 
unit vectors in the radial and axial directions in the cylindrical coordinate system used. 
The problem domain is reduced to one quadrant owing to axisymmetry about the axis 
r̃ = 0 and symmetry about the plane z̃ = 0. A detailed schematic is shown in figure 2. 
In what follows, the subscript ()i denotes variables in the drop when i = 1 and variables 
in the outer liquid when i = 2. 

In this paper, problem variables are non-dimensionalized using the undeformed drop 
radius R as the characteristic length lc ≡ R, the inertial-capillary time-scale (based on i 
the drop density) as the characteristic time tc ≡ ρ1R3/σ, the ratio of the two, which is i 
the inertial-capillary velocity, as the characteristic velocity scale vc ≡ lc/tc = σ/ρ1R, 
and the capillary pressure as the characteristic stress pc ≡ σ/R. The flow is then governed √ 
by the following dimensionless groups: the Ohnesorge number Oh = µ1/ ρ1σR, which is 
the ratio of the viscous force to the square root of the product of the inertial and capillary 
forces, viscosity ratio m2 = µ2/µ1, density ratio γ2 = ρ2/ρ1, dimensionless strain rate i 
U∞ = G ρ1R3/σ (which can also be thought of as the ratio of the imposed velocity RG 
to the inertial-capillary velocity vc), and the van der Waals number A = AH /(6πσR

2) 
which is the ratio of the force due to van der Waals attraction to capillary force. In what 
follows, variables without tildes over them denote the dimensionless counterparts of the 
variables with tildes over them, e.g. r̃ and r ≡ r̃/R stand for the dimensional and the 
dimensionless radial coordinate. 

The dynamics in the regions Ω1(t) and Ω2(t), i.e. inside and outside the drops, are 
governed by the continuity and Navier-Stokes equations which are given in dimensionless 
form by 

v · vi = 0 (2.1a)   
∂vi

γi + vi · vvi = v · Ti (2.1b)
∂t   

T
where the stress tensor Ti ≡ −piI+miOh (vvi) + (vvi) , and pi and vi = uier +wiez 

denote the pressure and velocity in liquid i respectively. Furthermore, ui and wi stand 
for the radial and axial components of the fluid velocity. Lastly, the density and viscosity 
ratios for fluid 1 are used as characteristic values such that γ1 = m1 = 1, while γ2 and 
m2 have already been specified. 

The governing equations are solved subject to a number of boundary conditions. Key 
among these are the kinematic and traction boundary conditions that are applied at the 
liquid-liquid interface ∂Ω(t), which is unknown a priori, to enforce mass conservation 
and account for the jump in stress due to interfacial tension and van der Waals forces 
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n · (vi − vs) = 0 (2.2a) 

A 
n · (T2 − T1) = 2Hn − n (2.2b)

h3 

where n represents the unit normal to the interface as shown in figure 2, vs represents 
the velocity of points on the interface, and 2H represents twice the mean curvature, 
equal to minus the surface divergence of the unit normal (−vs · n). The second term on 
the right side of equation (2.2b) represents van der Waals attraction between the two 
drops which becomes significant when the axial distance between the interfaces, denoted 
by h ≡ h̃/R, becomes of the order of a few hundred nanometers, and thus the value of A 
is typically small (De Gennes 1985; Teletzke et al. 1987; Chesters 1991). In the current 
formulation, h/2 ≡ h̃/2R is taken to be equal to the axial coordinate of the interface 
∂Ω(t). It should be noted that in the current formulation as has also been the case in 
virtually all other studies involving drop coalescence and the rupture of thin films and 
liquid sheets, the effects of interface curvature on van der Waals forces are neglected. As 
shown by Dai et al. (2008), the complete expression for the disjoining pressure leads to 
corrections of the order of (h̃/R)2 to the original expression derived for plane interfaces. 
As van h/R ≈ 10−4 (see below), we der Waals forces become significant when ˜ are 
justified in neglecting curvature effects, which are tantamount to corrections of the order 
of 10−8 compared to the order one term used in our problem formulation. 

Additional boundary conditions arise because of symmetry and the far field condition 
on the velocity at large distances from the two drops. Symmetry boundary conditions 
are applied at the axis of (axi)symmetry r = 0 and the plane of symmetry z = 0. At 
large distances from the origin, the velocity field in the outer liquid v2 is given by 

r 
v2(|x| → ∞) = U∞ er − zez (2.3)

2 

where x is the position vector. 

The system is initially quiescent and two stationary, equal-sized, spherical drops are 
separated by a dimensionless center-to-center distance d(t = 0) = α. At time t = 0, the 
flow in the outer liquid is impulsively turned on by imposing the velocity profile given 
by equation (2.3) and maintained at that value thereafter to drive the two drops toward 
each other. 

2.2. Choice and values of dimensionless groups 

On account of different characteristic scales used in this paper and those emloyed by 
previous researchers to simulate drop coalescence under creeping flow conditions (Janssen 
et al. 2006; Yoon et al. 2007; Nemer et al. 2013), it is useful to relate the dimensionless 
groups used here to the capillary number Ca and Reynolds number Re used by others: 

µ2GR 
Ca = = m2OhU∞ (2.4)

σ 
ρ2(GR)R U∞γ2

Re = = (2.5) 
µ2 m2Oh 
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Table 1. Values of key dimensionless groups used in the simulations 

Dimensionless group Name and/or physical meaning 
Value or ranges of values for 1 
mm drops of water in oil or drops 
of oil in water 

γ2 = ρ2/ρ1 
Density ratio 
persed phase) 

(continuous to dis ≈ 1 

m2 = µ2/µ1 
Viscosity ratio 
dispersed phase) 

(continuous to 
0.1 to 10 

√ 
Oh = µ1/ ρ1Rσ 

Ohnesorge number (defined in 
terms of dispersed phase proper
ties) 

10−2 to 1 

A = AH /(6πσR
2) van der Waals number 10−11 to 10−10 

 
U∞ = G ρ1R3/σ 

Ratio of imposed velocity driving 
two drops together to inertial-
capillary velocity 

Typically 0.05 but 0.01 to 0.1 

In these previous publications, both of these dimensionless groups are defined 
using the properties of the outer liquid (the middle terms in the previous two 
equations), as opposed to the practice adopted here, where the properties of the 
drop liquid are used as characteristic values. It is worth noting that whereas 
U∞ = Gtc = (GR)/(R/tc) is the ratio of the imposed velocity to the inertial-capillary 
velocity, OhU∞ = Gtv = (GR)/(R/tv) is the ratio of the imposed velocity to the 
visco-capillary velocity where tv = µ1R/σ is the visco-capillary time (based on the drop 
viscosity). Also, the Ohnesorge number can then be seen to be the ratio of the two 
capillary time scales, viz. Oh = tv/tc. It is clear that in the creeping flow limit, Oh → ∞ 
and U∞ → 0 while OhU∞ and hence Ca are finite but because U∞/Oh = Gt2/tv, both c 
U∞/Oh and Re → 0 as can be seen from equations (2.4) and (2.5). Therefore, later in 
the paper, the values of U∞ and Oh can be varied in a such a way that the product 
OhU∞ can be kept constant to match capillary numbers used in earlier studies but the 
ratio U∞/Oh can be systematically increased from a small value to probe the effect of 
increasing inertia on the coalescence dynamics. 

In addition to retaining some similarity between the values of certain dimensionless 
groups used here with earlier studies, the range of values of the dimensionless groups 
used in the simulations was dictated by focusing attention on one of the most important 
practical applications of coalescence. This application concerns oil-water and water-oil 
emulsions which arise in the processing of crude oil or petroleum among others. Table 
1 lists the ranges of the values of the dimensionless groups in such systems composed 
of drops of radii of 1 mm (or 10−3m). In arriving at the values of the parameters in 
this table, use was made of the fact that in such systems and in most liquid-liquid 
emulsions, the densities of both phases are approximately 1 g/cm3 (or 103 kg/m3) so 
that γ2 ≈ 1. The interfacial tension of most liquid-liquid systems is of the order of 
ten to tens of dyne/cm (or mN/m). Thus, taking a nominal value of σ = 10 dyne/cm, 
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Oh = µ1/ (1)(10−1)(10) = µ1 if cgs units are used. Thus, if the dispersed phase is 
water, Oh = 10−2, but if it is crude oil, 10−2 , Oh , 0.1 to 1. Therefore, for most water 
and oil emulsions, the viscosity ratio m2 ranges between 0.1 and 10. Also, we do not 
consider values of m2 smaller than 0.1 and larger than 10 because in scaling or order of 
magnitude analysis, values that are small, order one, and large correspond to 0.1, 1, and 
10 (Deen 1998). Values of the van der Waals number are based on standard values of the 
Hamaker constant which lies between 10−21 J and 10−18 J. For drops of radii of 1 mm, 
Re = G(10−1)2(1)/µ2 in cgs units. Therefore, to obtain a Reynolds number of unity, 

−1 −1G = 1 s if the external phase is water or a low-viscosity crude oil but G = 10 s if 
the external phase is a crude oil that is ten times more viscous than water. For 1 mm 
drops, the inertial-capillary time is 10−2 s. The aforementioned values of G correspond 
to values of U∞ of 10−2 and 10−1. Thus, in many simulations reported later on in the 
paper, a value of U∞ = 0.05 is used. 

In this paper, the effect of gravity on the coalescence dynamics is neglected. The 
velocity of rise/fall of a spherical drop to buoyancy is known to scale as ub ∼ |Δρ|gR2/µ2 

where Δρ ≡ ρ2 − ρ1 and g is the acceleration due to gravity. Thus, the effect of gravity 
is negligible if ub is small compared to the imposed velocity GR or 

ub ∼ Bo/Ca « 1 (2.6)
GR 

where Bo = |Δρ|gR2/σ is the gravitational Bond number. Thus, when the densities 
of the two phases are identical so that Bo = 0, this inequality is always satisfied. For 
example, near the end of the results section, a phase diagram of coalescence is presented 
that shows how the drainage time varies with Oh and m2 when Δρ = 0. Situations 
when this inequality is not satisfied under terrestrial conditions can be considered to 
represent experiments in which coalescence between two drops takes place in a low-
gravity environment (Wang et al. 1994, 1986). 

3. Numerical solution scheme and validation tests 
The governing equations (2.1a−2.1b), subject to the interfacial boundary conditions 

(2.2a−2.2b), the remaining boundary conditions given in the previous section, and the 
aforementioned initial conditions, for simulating the collision and coalescence of two 
drops suspended in a second liquid constitute a coupled set of transient nonlinear, 
second-order partial differential equations in space. These equations are solved by a 
fully implicit method of lines algorithm which utilizes an arbitrary Lagrangian-Eulerian 
scheme, the Galerkin finite element method for spatial discretization (Gresho & Sani 
1998; Gockenbach 2006; Basaran & Wohlhuter 1992; Feng & Basaran 1994) and an 
adaptive finite difference method for time integration (Gockenbach 2006; Patzek et al. 
1991; Wilkes & Basaran 2001). As this problem is a free boundary problem that 
involves deformable liquid-liquid interfaces, a special elliptic mesh generation technique, 
originally developed for study of coating flows by Christodoulou & Scriven (1992) and 
later adapted to analyze transient free surface flows involving finite-time hydrodynamic 
singularities (see below), along with algebraic meshing techniques, is employed to track 
the moving boundaries and tessellate the moving/deforming domains (Ω1(t) ∪ Ω2(t)) 
into quadrilateral sub-domains (Notz & Basaran 2004). At each time step, the resulting 
nonlinear algebraic equations are solved iteratively using Newton’s method where the 
Jacobian is computed analytically. Complete formulation of residuals and corresponding 
Jacobians are given in Sambath (2013), and additional details on computational methods 

http:2.2a�2.2b
http:2.1a�2.1b
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Figure 3. An illustrative coarse mesh that has been generated using the coupled 
elliptic-algebraic mesh generation algorithm that is used to tessellate the computational domain. 
The computational domain which, because of axial symmetry about r = 0 and reflective 
symmetry about the plane z = 0, consists of one quadrant in the (r, z)-plane and can be 
seen to have been divided into 18 quadrilateral sub-domains. Each of these sub-domains is then 
discretized using elliptic mesh generation for those sub-domains adjacent to the interface and 
typically algebraic mesh generation for ones far away from it. The mesh is weighted radially in 
regions where there are liquid-liquid interfaces to better capture the interface dynamics for a 
given computational cost. 

used can be found in Sambath (2013) and Garg (2018). 

As it is impracticable in simulations for the computational domain in the exterior 
liquid to extend all the way out to infinity, the domain is truncated at a radial location 
r = r∞ and axial location z = z∞, and where boundary condition (2.3) is imposed. For 
all the results to be presented in this paper, r∞ = z∞ = 7. Further systematic increases 
to the values of these distances resulted in negligible changes in the computed results. 
Moreover, with the exception of one case, in all of the simulation results to be reported, 
the initial center-to-center separation between the drops was taken to equal four times 
the drop radii, viz. d(t = 0) = α = 4. Systematic grid independence studies were also 
carried out to determine discretizations that are needed to yield mesh-independent 
results. A sample coarse mesh is shown in figure 3. Newton iterations, which were 
continued until residual norms fell below 10−6, were found to converge quadratically, 
thereby confirming the correctness of the analytically computed Jacobian. Typically, 
3-4 iterations were required to attain convergence at each time step. Variants of this 
algorithm have been well-benchmarked and used by our group in the past to analyze 
hydrodynamic singularities that arise during the breakup of filaments (Chen et al. 2002; 
Notz & Basaran 2004; Suryo & Basaran 2006; Bhat et al. 2010; Thete et al. 2015; 
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Figure 4. Transient shapes, half the major and minor axes, and oscillation frequencies of 
a low-viscosity drop of Oh = 10−3 that is immersed in another low-viscosity liquid of the 
same viscosity as the drop (m2 = 1). In the simulations, the drops are released from static 
deformations such that the drop’s shape f(θ, t = 0) as a function of the meridional angle θ in 
spherical coordinates is given by f(θ, t = 0) = 1 + 0.1P2(cos θ). Computed (a) shapes at six 
instants in time and (b) variation in time of half the major axis a and half the minor axis b of 
a drop that is oscillating in an exterior liquid of the same density as the drop (γ2 = 1). The 
profiles shown in (a) correspond to time instants of t = 0, 0.3, 0.6, 0.9, 1.2 and 1.5, which are 
marked by circles in (b). (c) Variation of oscillation frequency with density ratio γ2: comparison 
of frequencies obtained from simulations (ωsim) with ones from the inviscid theory of Rayleigh 
(1879) (ωR) and the low-viscosity approximation of Miller & Scriven (1968) (ωLV A). 

Castrejón-Pita et al. 2015; Kamat et al. 2018), rupture of thin films (Garg et al. 2017), 
and breakup and coalescence of bubbles (Munro et al. 2015; Anthony et al. 2017) and 
drops (Paulsen et al. 2012; Collins et al. 2013). 

To validate the code that has been developed and used in this paper, predictions 
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Figure 5. Computed evolution in time of (a) the shape of the liquid-liquid interface and (b) half 
the minimum axial separation between the drops zmin, half the axial separation of the interfaces 
along the axis of symmetry zcenter , and radius of the dimple rdimple that forms in mid to late 
stages of coalescence of two drops in an outer liquid. Here, Oh = 1.55×104 , m2 = 5.33, γ2 = 1.1, 
U∞ = 1.81 × 10−7, and A = 4.99 × 10−11 (but see below). (It is worth noting from equations 
(2.4) and (2.5) that Ca = 0.015 and Re = 1.3 × 10−12.) In (b), simulation results are also shown 
for the situation in which all the dimensionless groups have the same values as before but the 
van der Waals force has been turned off (and hence the drops do not coalesce). The two cases 
are distinguished by drawing the curves corresponding to them in red and blue as indicated in 
(b). The open circles in (b) represent the time instants for which the shapes of the interface are 
shown in (a). In (b), the instant at which the center-to-center separation between the two drops 
equals twice their radii is identified by d = 2. The results of our simulations when A  = 0 agree 
well with the simulations of Yoon et al. (2007). Moreover, the scaled drainage time tdU∞ of 1.34 
obtained from our simulations is in excellent agreement with the experimentally measured value 
of 1.32 of Yoon et al. (2005) who studied coalescence of polybutylene (PB) drops suspended in 
polydimethysiloxane (PDMS). 

that are made with it are tested against well-established results in the literature on 
linear stability analysis of the oscillations of liquid drops that are surrounded by another 
liquid when inertial (viscous) effects are dominant (negligible), and experimental and 
computational studies of drop coalescence when viscous (inertial) effects are dominant 
(negligible). 

Rayleigh (1879) obtained the frequencies ωR of small-amplitude, axisymmetric oscilla
tions of an incompressible, inviscid liquid drop that is freely suspended in a second immis
cible incompressible, inviscid liquid. During linear oscillations, a drop whose undisturbed 
profile is a sphere undergoes shape oscillations such that the n-th mode of oscillation 
and hence the perturbation to the spherical base profile is proportional to the Legendre 
polynomial of order n, Pn(cos θ), where θ is the azimuthal angle measured from the 
axis of symmetry and n � 2. In dimensionless form, the dispersion relation obtained by 
Rayleigh (1879) that gives the eigenfrequency of each linear mode of oscillation is   1/2 

n(n − 1)(n + 1)(n + 2) 
ωR(n, γ2) = (3.1)

(n + 1) + nγ2

Almost a century later, Miller & Scriven (1968) (see also Prosperetti (1980), Marston 
(1980), and Basaran et al. (1989)) determined the corresponding linearized frequencies 
of oscillation when both liquids have finite viscosities. Although the form of the general 
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dispersion equation is complex, it takes on a particularly simple form when both fluids 
have low viscosities. With this so-called low-viscosity approximation (LVA), the frequency 
of the n-th eigenmode of oscillation is given by   √ 

(2n + 1)2 Ohγ2
ωLV A(n, γ2) = ωR 1 − √ √ (3.2)

2 2(n + 1 + γ2n)(1 + γ2)

To compare predictions made with the code of this paper with exact results from linear 
theory given above, the code developed here was used to simulate the axisymmetric 
oscillations of a free liquid drop of low viscosity of Oh = 10−3 and m2 = 1 over a range 
of density ratios γ2. In the simulations, the drops were released from an initial static 
shape given by f(θ, t = 0) = 1 + εP2 (cos θ) where the perturbation amplitude ε = 0.1 
(Basaran 1992). 

Figure 4(a) shows the instantaneous shapes of an oscillating drop of a low-viscosity 
liquid of Oh = 10−3 that is surrounded by a liquid of the same viscosity and density as 
the drop liquid, i.e. m2 = 1 and γ2 = 1, at six instants in time. Released from a prolate 
static deformation, the drop tends towards a sphere due to surface tension, overshoots 
its equilibrium position due to inertia, and continues to oscillate about its equilibrium 
state. While these oscillations are eventually damped out, the computed value of the 
frequency of oscillations is expected to be close to that predicted by Rayleigh for an 
inviscid drop and by Miller and Scriven’s LVA because of the low value of Oh = 10−3 

and smallness of the initial amplitude of the imposed perturbation. Figure 4(b) shows 
the evolution in time of the half-height a of the drop along the symmetry or z-axis and 
its radius b in the equatorial plane, viz. a/b is the drop’s instantaneous aspect ratio. 
The oscillatory response is virtually sinusoidal and the frequency of these oscillations, 
computed using the Fast Fourier Transform (FFT) method, is ωsim = 2.12. This value 
is within 4% of ωR = 2.20 predicted by Rayleigh’s inviscid theory from equation (3.1) 
but more reassuringly within 0.9% of ωLV A = 2.14 predicted by the more accurate 
viscous theory of Miller and Scriven from equation (3.2). Figure 4(c) shows excellent 
match between the frequencies obtained from simulations with those predicted from 
the inviscid theory of Rayleigh (1879) and the low-viscosity approximation of Miller & 
Scriven (1968) for situations in which Oh and m2 are held fixed but the density ratio γ2 

is varied over a wide range. The excellent agreement observed between computed results 
and theoretical predictions provides credence to the accuracy of the code used in this 
work in simulating the dynamics of two-fluid flows when both fluids are nearly inviscid 
liquids or have low viscosities (Ohnesorge numbers). 

Yoon et al. (2005) experimentally investigated the coalescence dynamics of 
polybutylene (PB) drops suspended in polydimethylsiloxane (PDMS) using Taylor’s 
four-roll mill setup and high speed imaging techniques. Two 27.2 µm drops of PB 
(ρ1 = 890 kg/m3 , µ1 = 5.5 Pa.s) coalescing in PDMS (ρ2 = 976 kg/m3 , µ2 = 29.3 
Pa.s), where the interfacial tension between the two fluids was σ = 4.6 × 10−3 N/m, 

−1with a strain rate of G = 8.7 × 10−2 s had a scaled drainage time of t̃dG = 1.32. 
(We note that t̃dG ≡ tdU∞ because td ≡ t̃d/tc and U∞ ≡ Gtc. Therefore, to avoid 
confusion, we refer to td as the drainage time and tdU∞ as the scaled drainage time.) 
These experimental results were later corroborated by the boundary integral simulations 
of Yoon et al. (2007) using the parameter values of Ca = 0.015, m2 = 5.33, γ2 = 1.1, 
and A = 4.99 × 10−11 . Figure 5 shows results of our simulation for the corresponding 
parameter values of Oh = 1.55 × 104 , m2 = 5.33, γ2 = 1.1, U∞ = 1.81 × 10−7, and 
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Figure 6. Computed evolution in time of half the minimum axial separation between the drops 
zmin and resulting drainage times td (see below) for four cases where all dimensionless groups 
are held constant while the initial separation between the drops d(t = 0) = α is successively 
increased by 4 as indicated in the legend on the bottom left of the figure. The computed values of 
the drainage time are: td = 11.83 when α = 4, td = 11.89 when α = 8, td = 11.61 when α = 12, 
and td = 11.87 when α = 16, thereby showing that td remains virtually constant as the initial 
separation is varied by a factor of four. Here, Oh = 0.02, m2 = 5.26, γ2 = 1.1, U∞ = 0.095, and 
A = 4.99 × 10−11. It should be noted that for these parameter values, Ca = 0.01 and Re = 1. 

A = 4.99 × 10−11. The time evolution of the shape of the liquid-liquid interface is shown 
in figure 5(a), and those of half of the minimum axial separation zmin, half of the axial 
distance zcenter between the two drops along the axis of symmetry, and the radius of the 
dimple rdimple are shown in figure 5(b). Our results exhibit excellent agreement with the 
simulations of Yoon et al. (2007), and yield a scaled drainage time of t̃dG ≡ tdU∞ = 1.34 
which agrees closely with that measured experimentally by Yoon et al. (2005) who had 
obtained a value of 1.32 (see above). (In all the simulation results presented in this 
paper, coalescence is said to occur when the minimum axial separation between the 
interfaces of the two drops zmin falls below 5 × 10−6 . Thus, for two mm sized drops, 
coalescence occurs when their interfaces are separated by ∼ 5 nm.) The excellent accord 
between the new computational results and these well established experimental and 
simulation results is further testament to the accuracy of the solution algorithm and 
computer code developed and used in this paper. 

Before presenting the results of a detailed parametric study of drop coalescence, it is 
important to determine whether the initial separation between the centers of the two 
drops d(t = 0) = α has any effect on the drainage times to be reported in this paper. 
Figure 6 shows the computed evolution in time of half the minimum axial separation 
between the drops zmin and resulting drainage times td (see the caption to the figure) in 
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Figure 7. Time sequence of shapes and positions of two drops (frames A-E) and blowups of 
the interface shapes near coalescence (frames F-G). (A) The two drops at t = 0 when their 
initial center-to-center separation is 4. Thereafter, the two drops are driven together by the 
imposed flow field in the external liquid. (B) As the drops get within one diameter of each 
other, their interfaces begin to deform forming a thin film of the surrounding liquid between 
them. (C-E) This film then drains out radially allowing the drops to coalesce. (F-G) Up close 
views or blowups of the interface of the top drop near the plane of symmetry in the final stages 
of approach show that the drops in fact move away from each other for a brief period before 
coming back to coalesce on their second approach. Dimpling of the interface is evident during 
mid to late stages of coalescence. Here, Oh = 0.02, m2 = 5.26, γ2 = 1.1, U∞ = 0.095, and 
A = 4.99 × 10−11. It should be noted that for these parameter values, Ca = 0.01 and Re = 1. 

four cases where the values of all the dimensionless groups except α have been kept fixed 
and the value of α has been successively increased by four. These results make plain that 
the drainage time td is virtually independent of α and that the only effect of increasing α 
is to increase the time taken by the drops to reach a center-to-center separation of d = 2. 

4. Results & discussion 
Figure 7 shows a time sequence of the shapes and positions of two drops that 

are suspended in a second fluid (Oh = 0.02,m2 = 5.26, γ2 = 1.1, U∞ = 0.095, and 
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Figure 8. Effects of van der Waals forces and inertia on the evolution in time of the separation 
between two drops, the net force acting on a drop, the surface area of a drop, and drop shapes. 
For the base case situation identified as “With inertia,” Oh = 0.02, m2 = 5.26, γ2 = 1.1, 
U∞ = 0.095, and A = 4.99 × 10−11, and both inertia and van der Waals forces are operative. For 
the situation identified as “Without vdW forces,” all the parameters are the same as in the base 
case except A = 0, i.e. the van der Waals force has been turned off. For the situation identified 
as “Without inertia,” all the parameters are the same as in the base case except inertia has 
been turned off. (a) Evolution in time of half the minimum axial separation between the two 
drops’ interfaces zmin for three cases in which both inertia and van der Waals are considered 
(base case), inertia is considered but van der Waals forces are neglected (Without vdW forces), 
and when inertia is artificially neglected but van der Waals forces are accounted for (Without 
inertia). As discussed in the text, t1 < t2 < t3 < t4 are instances in time when significant events 
occur during the collision of two drops. (b) Net force Fz (solid lines), and its components—net 
force due to pressure Fz

p (dashed lines) and net force due to viscous stress Fz
v (dashed-dotted 

lines)—in the positive z direction determined from equations (4.1-4.3) being exerted by the 
ambient fluid on the drop when inertia is considered and when inertia is absent. (c) Surface area 
of the drop when inertia is considered and when inertia is absent. (d) Drop shapes with and 
without inertia at time instants t1, t2, and t3, which are marked by the dashed vertical lines, 
and at t4, which is marked by the open symbol, in (a),(b), and (c). 
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A = 4.99 × 10−11) as they approach each other, starting from an initial center-to-center 
separation of 4 (frame A). From equations (2.4) and (2.5), the capillary and Reynolds 
numbers for this case are Ca = 0.01 and Re = 1. As the drops get within one diameter 
of each other, their interfaces begin to deform, and a thin film of the outer liquid 
forms between them (frame B). This film then drains out radially allowing the drops 
to eventually coalesce (frames C-E). Up close views or blowups (frames F-G) of the 
top drop’s interface near the plane of symmetry in the final stages of approach show 
that the drops locally move away from each other, or rebound, but subsequently go on 
to coalesce on the second approach. Frames F-G also make plain that dimpling of the 
interface occurs during the mid to late stages of coalescence and the radial location of 
half the minimum axial separation between the drop interfaces, zmin, is at r = rdimple. 

Figure 8(a) shows the time evolution of zmin in the situation in which the dimensionless 
parameters have the same values as in Figure 7 and compares the resulting dynamics 
to two other situations. In the first of these two other situations, to be discussed in this 
paragraph, all the dimensionless parameters have the same values as in Figure 7 but the 
van der Waals forces have been “turned off” such that A = 0. The second of these other 
situations is discussed in the next paragraph. Comparison of the zmin versus t curves in 
figure 8(a) for the situation in which van der Waals forces are on (the curve labeled “With 
inertia” and for which A = 4.99 × 10−11) and the one for which van der Waals forces 
have been turned off (the curve labeled “Without vdW forces” and for which A = 0), 
it is clear that the forces that eventually cause the film to rupture and the drops to 
coalesce are the van der Waals forces of attraction or intermolecular forces as the drops 
do not make contact when these forces are “turned off.” As is well known, because the 
van der Waals forces scale as A/h3, they become significant only at very small distances, 
and cause local rupture of the thin film between the two drops at rdimple. For the case 
under investigation, as the two drops approach one another for the first time, they get 
within a separation of h = 2zmin ≈ 10−3 at the instant in time t ≈ t2 (instants in time 
such as t2 where significant events occur are defined in table 2) when they are closest 
to each other. It is also clear from figure 8(a) that both curves, viz. the one for which 
A = 4.99 × 10−11 and the other for which A = 0, overlap from the initiation of the 
dynamics until the instant in time corresponding to this value of zmin and thereby allow 
one to infer that van der Waals forces are insignificant at this instant, viz. A/h3 « 1, 
despite the apparent smallness of the gap separating the two drops. However, once the 
drops rebound but then are driven together by the external flow on their second approach, 
they get within a minimum separation of the order of h = 2zmin ≈ 4 × 10−4 at which 
point the van der Waals forces become significant as A/h3 ∼ 1. Beyond this point in 
time, which is indicated as the instant t4 in figure 8(a), the curve corresponding to A  = 0 
and that corresponding to A = 0 begin to diverge. For the case where van der Waals 
forces are present, for times t > t4 their importance continues to grow as the film tends 
toward rupture and the two drops tend toward contact and coalescence. By contrast, the 
two drops fail to coalesce when van der Waals forces are absent. 

4.1. Significance of normal force due to pressure in causing rebound 

A subtle but inevitable question here is what prevented the drops from getting close 
enough on their first approach and hence caused them to rebound? Suspecting that the 
cause is inertia, we test this hypothesis by artificially excluding or throwing out the 
inertial terms in equation (2.1b) and solving a reduced system of equations where the 
collision of two drops takes place under conditions of Stokes flow. Thus, we compare in this 
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Table 2. Definitions and/or significance of times t1, t2, t3, and t4 used to identify key 
instances during the collision and coalescence of two drops 

Time Definition and/or significance 

t1 

Early time at which significant deviations can be observed between cases 
without inertia and with inertia, and when interfacial area and force are near 
their maxima in the latter case 

t2 

With inertia: time at which drops get closest on first approach and interfacial 
area and force are at their maxima; without inertia: drops continue toward 
each other 

t3 Time at which drops have moved apart for the case with inertia 

t4 
Time of second approach when interfacial area and deformation are on the rise 
for the case with inertia 

section the coalescence dynamics in two cases: drop coalescence with inertia considered, 
which is referred hereafter to as “with inertia,” and when inertia is “turned off,” referred 
to as “without inertia.” Figure 8(a) shows the variation with time of zmin for these 
two cases, and it is evident that the presence of inertia alters the mid-stage dynamics 
of coalescence, e.g. the dynamics in the two cases starts deviating from one another as 
early as t1 and they differ significantly by t2. Without inertia, the minimum separation 
decreases monotonically as a function of time and the drops do not rebound. To gain 
further insights into the role of inertia, figure 8(b) compares the axial or z-component 
of the net force Fz exerted by the outer fluid on the top drop, and the contributions to 
this force that are due to the dynamic pressure Fz

p (referred to as the normal force due 
vto pressure) and that due to viscous stress Fz , in the presence and absence of inertia. 

These forces are computed as  
Fz = n · T2 · ez dS (4.1) 

S  
pFz = n · (−p2I) · ez dS (4.2) 

S    
vFz = n · m2Oh vv2 + (vv2)

T · ez dS (4.3) 
S 

At time instant t1, the drops are separated by zmin = 10−1 for the case with inertia, 
and the pressure in the film region between the drops is rising as the film is draining. 
Therefore, both F p, shown in figure 8(b), and the drop’s surface area, shown in figure z 
8(c), are increasing in the instants following t1. At this time, the net force Fz on the 
drop is positive and increasing, and thus opposing its motion towards the symmetry 
plane. In contrast, for the case without inertia, while pressure buildup and flattening 
of the interface also occur in the moments following t1, the increases in both F p andz 
the drop’s surface area are much smaller. Furthermore, the increase in F p is balanced z 
by a corresponding decrease in F v , so that the net force Fz on the drop for the case z 
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Figure 9. Radial velocity profiles evaluated at the plane of symmetry z = 0 in the film region 
between two colliding drops at time t = 12. When inertial effects are turned off, (a), the radial 
velocity profile is positive everywhere indicating expulsion of the liquid from the region between 
the drops, i.e. film drainage, and that the drops are continuing to approach each other. However, 
when inertial effects are included, (b), the radial velocity becomes negative in the region located 
at the edge of the film. This change in the sign of the radial velocity indicates that fluid is flowing 
back into the film, thereby opposing film drainage and signaling the onset of drop rebound. Here, 
Oh = 0.02,m2 = 5.26, γ2 = 1.1, U∞ = 0.095, and A = 4.99 × 10−11 . 

without inertia is virtually zero. Consequently, the drop in the situation without inertia 
does not experience any deceleration whatsoever as observed in the situation with inertia. 

At time t = t2, both the force F p and the drop’s surface area for the case withz 
inertia are at their maxima, as a large pressure-induced force acts on the flattened drop. 
Indeed, the large extent of the interfacial deformation and/or the large value of rdimple 

in this case can both be readily seen in figure 8(d). As the interfaces are separated by 
zmin ≈ 10−3 at this instant, van der Waals forces are unable to cause rupture of the 
film, and because of the large positive value of Fz the drops are pushed away from each 
other, thereby causing the outer liquid to flow back into the film region (see below). In 
the moments following t2, the drop with inertia tends towards its spherical shape as the 
pressure-induced force decreases. In contrast, the dynamics is remarkably different over 
this period in time for the case without inertia as the magnitude of F p acting on the z 
drop is much smaller, and consequently the extent of the deformation of the interface 
is much smaller compared to the case with inertia. As the net force Fz is still virtually 
zero in this case, the drops continue to approach each other. Another key contrast 
between the two cases can be gleaned from the simulation results by examination of the 
the radial velocity profiles in the film at time t = 12 such that t2 < t = 12 < t3 (see 
figure 9). For the case without inertia, the radial velocity u2 is positive everywhere in 
the film including its edges (figure 9(a)), indicating that fluid is being expelled from 
the film region and that the drops are continuing to approach each other. Thus, in the 
case without inertia, the interfaces are able to get close enough to one another for van 
der Waals attraction to become significant and for the drops to coalesce without any 
rebound effects. However, for the case with inertia (figure 9(b)), the radial velocity is 
negative in the vicinity of the film’s edges, indicating that fluid is flowing into the film 
and that the drops are moving away from each other. 
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Figure 10. Contours of the radial velocity u at two instants in time, (a) t = 8.31 and (b) 
t = 8.79, in the thin film that forms between the colliding drops. The liquid-liquid interface is 
shown by the solid black line. Here, the values of the parameters are identical to those in figure 
8. The radial velocity is positive and increases both in time t and radial direction r. 

When t ≈ t3, the drops in the case with inertia have moved apart and the value 
of rdimple has fallen to a small value. Viscous force Fz

v , which had heretofore been 
sub-dominant, has now become dominant and results in a net negative Fz that pushes 
the drops back towards each other. This causes the interfaces of the two drops to deform 
and the interfacial area to increase for the second time. For the case without inertia, 
pressure in the film is large enough to dominate viscous stress, and the resulting net 
positive Fz begins to cause the drops to slow down. However, as the separation falls to 
zmin ≈ 2 × 10−4, van der Waals forces of attraction become significant. Thus, in the 
moments following t3, rapid local thinning of the film separating the drops occurs at the 
radial location of rdimple for the case without inertia and the separation between the two 
drops quickly reaches molecular lengthscales, signaling the incipience of drop coalescence. 
For the case with inertia, both interface deformation and interfacial area continue to 
increase as the drops continue to approach each other for times t ≈ t4. However, the 
deformation of the drop is much smaller during this second approach compared to that 
on the first approach as the pressure-induced force opposing the approach is much lower 
compared to that during the first approach. On this second approach, the drops are 
able to get sufficiently close so that by the time zmin ≈ 2 × 10−4 the van der Waals 
forces have become large enough to initiate the intermolecular force-driven rupture of 
the film separating the drops. Thus, in summary, for coalescence at Re = 1, inertial 
effects lead to a net positive Fz acting on the drop during the mid to the late stages 
of coalescence, resulting in a much larger deformation or rdimple in comparison to the 
“Stokes” case, causing the drops to decelerate and eventually to rebound. Consequently, 
it is on the subsequent approach that the drops are able to get sufficiently close for van 
der Waals forces to become large enough to rupture the thin film and lead to coalescence. 

4.2. Pressure buildup in the film due to inertia 

A natural question that arises from the results presented in the previous subsection 
is why the normal force F p due to pressure is much larger when inertia is present in z 
comparison to when inertia is neglected during the initial approach of the two drops 



    

    

20 K. Sambath et al 

t

v c
o
m

0 5 10 15
0.2

0.15

0.1

0.05

0

Without inertia

With inertia

Figure 11. The variation with time of the velocity of the center of mass vcom of the drop in 
two cases: (1) when inertia is considered and (2) when inertia is neglected from the governing 
equations. The horizontal line represents vcom = 0 and helps to highlight the bounce experienced 
by the drop when inertia is considered. Here, the values of the parameters are identical to those 
in figure 8. 

(starting at t ≈ 8 in figure 8). We turn to an analysis of the governing equations for the 
liquid velocities and pressure in the film along the plane of symmetry z = 0 to provide 
the required insights. The continuity equation in the film of outer liquid can be written 
as 

1 ∂ ∂w2
(ru2) = − (4.4) 

r ∂r ∂z 

In both drop coalescence and the dynamics of thin free films, or liquid sheets, the gradient 
of u2 in the axial direction is small compared to its gradient in the radial direction, or 
∂u2/∂z « ∂u2/∂r. Thus, the r-component of the Navier-Stokes equation (2.1b) in the 
film of outer liquid reduces to 

∂u2 ∂u2 ∂p2 ∂ 1 ∂ 
γ2 + u2 = − + m2Oh (ru2) (4.5)

∂t ∂r ∂r ∂r r ∂r 

Substituting equation (4.4) into equation (4.5) gives 

∂u2 ∂u2 ∂p2 ∂ ∂w2
γ2 + u2 = − − m2Oh (4.6)

∂t ∂r ∂r ∂r ∂z 

At the symmetry plane z = 0, w2 = 0 and thus the z-component of the Navier-Stokes 
equation (2.1b) is given by 
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∂p2 ∂2w2
0 = − + m2Oh (4.7)

∂z ∂z2 

The last equation reduces to ∂p2/∂z = 0 from the continuity equation and the earlier 
assumption of the smallness of the axial gradient of u2. Thus, equation (4.6) can be 
integrated w.r.t. r from r = 0 to r = re, where re is a radial location just outside the film 
region such that the pressure in the outer fluid is equal to the datum pressure, to give 

re ∂u2 ∂u2 ∂w2 ∂w2
γ2 + u2 dr = −p2|re + p2|r=0 − m2Oh − (4.8)

∂t ∂r ∂z ∂z 0 0re 

Therefore, the pressure in the film at the axis of symmetry r = 0, denoted by p0, is then 
given by 

re∂w2 ∂w2 ∂u2 ∂u2 
p0 = p2|re + m2Oh − + γ2 + u2 dr (4.9)

∂z ∂z ∂t ∂r re 0 0        
IV 

where V stands for the viscous term and I the inertial term. If the scale of the axial 
velocity and that of the axial distance are estimated by the center-of-mass velocity of 
the drop vcom and the local film thickness h, ∂w2/∂z ∼ vcom/h, then the pressure at the 
center of the film is given by 

1 1 re ∂u2 ∂u2 

IV 

The viscous term (V) is positive as the film thickness is such that hre > hr=0 while vcom 

is negative. Moreover, the inertial term (I) is positive because as the drop approaches the 
plane of symmetry, the radial velocity, which is non-negative, increases both in time and 
in the radial direction. The correctness of the last assertion is verified by interrogation of 
the radial velocity field determined from simulations, as highlighted by the contour plots 
shown in figure 10. In contrast, if inertia is excluded from the governing equations, the 

stokes pressure in the film at the axis p is now given by 0 

1 1stokes p0 ≈ p2|re + m2Ohvcom − (4.11)
h h re r=0    
V 

In other words, because of the presence of the additional positive inertial term (I) in the 
case with inertia compared to that in the absence of inertia, the pressure in the film is 
larger when inertia is included than when it is neglected during the initial stages of the 
approach of the two drops. Additionally, figure 11 shows the variation of the velocity of 
the center of mass vcom of the top drop with time for the two cases. This figure makes 
plain that the magnitude of vcom is larger in the case with inertia than without until t ≈ 8 

p0 ≈ p2|re + m2 Oh vcom 
h re 

− 
h r=0    + 

0 
γ2 

∂t 
+ u2 

∂r 
dr    (4.10) 
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Figure 12. (a) Variation in time of half the minimum separation zmin between two drops in 
four cases: (1) inertial effects are considered for both liquids, (2) inertial effects are turned 
off for the drop liquid, (3) inertial effects are turned off for the outer liquid, and (4) inertial 
effects are neglected for both liquids (Stokes flow). (b) Variation of zmin with the radius of the 
dimple rdimple that forms during mid to late stages of coalescence to highlight the extent of drop 
deformation in the four cases. Here, Oh = 0.023,m2 = 1, γ2 = 1, U∞ = 0.05, and A = .10−10 

Thus, Ca = 0.0015 in all four cases. 

after which the net positive Fz acting on the drop begins to cause it to decelerate in the 
case with inertia. Thus, the viscous term (V) is also larger until this time when inertia 

> pstokes is considered compared to when it is not. In conclusion, p0 during virtually 0 
the entire time that the two drops are approaching one another in the case with inertia. 
Thus, when inertia is considered, the larger pressure in the film causes the larger normal 
force on the drop, which in turn leads to the rebound dynamics as explained in section 
4.1. 

4.3. The significance of drop or dispersed phase inertia 

We next examine the role each phase’s inertia plays in drop rebound. Figure 12(a) 
shows the variation with time of zmin for two liquid drops that are driven to collision 
in a second immiscible liquid of identical viscosity and density (Oh = 0.023, m2 = 1, 
γ2 = 1, U∞ = 0.05, and A = 10−10) in four cases: (1) inertial effects are considered 
for both liquids, (2) inertial effects are excluded from the momentum equations for the 
drop liquid, (3) inertial effects are excluded from the momentum equations for the outer 
liquid, and (4) inertial effects are excluded from the momentum equations for both 
liquids so that both phases are undergoing Stokes flow. 

For case 1, the drops approach each other until half the minimum separation has fallen 
to zmin ≈ 2.0 × 10−4 after which the drops rebound. After rebounding, the interfaces 
locally approach each other again, before separating by a much larger distance than 
after the first rebound. The drops finally coalesce after the two interfaces approach each 
other for the third time (figure 12(a)). 

At the other end of the spectrum, for case 4 where both liquids are undergoing Stokes 
flow, zmin decreases monotonically with time and without any rebound (figure 12(a)). 
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Consequently, the drainage time for case 4 is much smaller than that for case 1. 

However, when inertial effects are only turned off for the drop liquid, case 2, 
the variation of zmin with time is identical to that observed when both liquids are 
undergoing Stokes flow (case 4 discussed in the previous paragraph), as shown in figure 
12(a). By contrast, excluding inertial effects in the outer liquid alone, case 3, has a 
much more modest impact on the dynamics. For case 3, similar to case 1, the drops 
are observed to rebound upon first approach, and coalesce on the third approach of the 
interfaces towards each other (figure 12(a)). The magnitude of the rebound, however, is 
suppressed in case 3 compared to case 1, with the accompanying result that the drainage 
time in case 3 is smaller than that in case 1. Indeed, the absence of inertia in the outer 
liquid in case 3 ensures that the viscous force (F v from equation 4.3) dominates and z 
pushes the drops back together more rapidly as compared to case 1. 

Figure 12(b) shows the variation of zmin with the extent of drop deformation that 
is characterized by rdimple in the aforementioned four cases. Dimple formation, and the 
consequent slowdown of film drainage begins at a separation of zmin ∼ 10−3 where 
A/h3 « 1 for cases 1 and 3 where inertia is included in either both phases or the 
dispersed phase. Thus, attractive van der Waals forces are negligible while the opposing 
hydrodynamic force is large at this stage of drop collision in both cases, resulting in the 
observed rebound. In contrast, for cases 2 and 4 where inertia is excluded from either 
the dispersed phase or both phases and where no rebound is observed, dimple formation 
begins at a much lower value of the separation between the drops: it commences when 
zmin ≈ 5 × 10−4, where A/h−3 ∼ O(1), and hence attractive van der Waals forces are 
large enough to drive the drops to coalesce on their first approach. In conclusion, it is 
clear from the results of figure 12 that inertia of the drop liquid, as opposed to inertia of 
the outer liquid, is primarily responsible for rebound. Moreover, the inclusion of inertia 
of the drop liquid results in early dimple formation and subsequent slowdown of film 
drainage, much before van der Waals forces are significant enough to cause local film 
rupture. 

4.4. The impact of drop rebound on drainage times 

An important consequence of drop rebound that arises when two drops are undergoing 
collision and coalescence in situations in which inertia is important is the increase in 
film drainage time td (cf. section 1). This time scale is a key parameter in population 
balance models that are widely used in engineering design of certain types equipment 
and devices such as coalescers, desalters, and dehydrators which are common, among 
others, in the oil and gas industry (Bajpai et al. 1976; Tobin et al. 1990; Zhang et al. 
1995). Figure 13 shows the variation with time of zmin for two liquid drops that are 
driven to collision in a second immiscible liquid of identical density in three situations 
in which the viscosity ratio m2 is increased from m2 = 1 to m2 = 6. When the outer 
liquid is of comparable viscosity to the inner liquid or m2 = 1, the drops rebound twice 
before coalescing on the third approach. In this case, coalescence is delayed because of 
the number of rebounds and the computed value of the drainage time, td = 16.06, is 
large. However, as the viscosity of the outer fluid is systematically increased to m2 = 6, 
the number of drop rebounds decreases from two to zero, and the value of the drainage 
time is nearly halved, as shown in the figure. In previous works, researchers (Janssen 
et al. 2006; Yoon et al. 2007) have developed scaling laws for the drainage time as a 
function of capillary number, t̃dG ∼ Cam . The value of the scaling exponent m has 
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Figure 13. Effect of the viscosity ratio m2 on drop rebound and drainage time td: the variation 
of half the minimum separation zmin with time t. For the three cases shown, the ratio of 
the viscosity of the outer fluid to the drop fluid is varied from one to six as indicated in the 
legend while all the other dimensionless groups are held fixed. The computed values of the 
drainage time are: td = 16.06 when m2 = 1 and the drops rebound twice, td = 10.51 when 
m2 = 2 and there is one rebound, and td = 8.33 when m2 = 6 and there is no rebound. Here, 
Oh = 0.023, γ2 = 1, U∞ = 0.05, and A = 10−10 . 

been reported to equal 3/2 by Chesters (1991), Yang et al. (2001) and Janssen et al. 
(2006), and was later updated to be 4/3 by Yoon et al. (2007) and Frostad et al. (2013). 
While the value of the scaling exponent is not yet universally agreed upon (Janssen & 
Anderson 2011), it is clear from figure 13 that the effect of inertia on drainage time adds 
a new and important dimension to this ongoing debate. 

Figure 14 shows the variation of the drainage time td with Ohnesorge number Oh for 
three different values of m2, holding all other parameters fixed at γ2 = 1, U∞ = 0.05, and 
A = 10−10. These results show that for situations in which m2 = 10, the response is quite 
similar to that which occurs in Stokes flow: drainage time monotonically increases with 
Oh with a scaling exponent of 4/3. As m2, G and U∞ are held constant, we can infer 
from equation (2.4) that t̃dG ∼ Ca4/3 in this case, in accord with the results of Yoon 
et al. (2007). However, when the external liquid is of comparable or lower viscosity than 
the drop liquid (m2 = 1 or 0.1), drainage time does not vary monotonically with Oh. 
Indeed, there is a jump or a spike at intermediate values of Oh in the curves depicting 
drainage time versus Ohnesorge number and a clear departure of computed results from 
the expected scaling law. 

Interrogation of simulation results to examine the drop trajectories for situations in 
which the spikes and hence the departure from the usual scaling law occur reveals that 
the deviation from the 4/3 scaling theory for drainage time is due to the inertia-driven 
rebound of drops. Figure 15(a) shows the time evolution of zmin for drop pairs where 
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Figure 14. Variation of drainage time td with Ohnesorge number Oh for three different 
values of the viscosity ratio m2 while holding fixed the remaining dimensionless groups at 
γ2 = 1, U∞ = 0.05, and A = . The short straight line of slope 4/3 helps indicate that 10−10 

with the exception of parameter values where td exhibits a spike as discussed in the body of the 
text, the simulation results follow the 4/3 scaling law deduced in previous studies of coalescence 
(Yoon et al. 2007). 

Oh = 0.008, 0.023, and 0.065. While drainage times for Oh = 0.008 and Oh = 0.065 
conform to the 4/3 scaling law and where zmin decreases monotonically with time, the 
drainage time for Oh = 0.023 departs from the 4/3 scaling law and a clear rebound effect 
is observed in the computed evolution of zmin with time. It accords with intuition that 
for larger values of Oh, the system is more viscous and inertial effects should therefore be 
less pronounced. Hence, there is no rebound phenomenon, as shown in figure 15(b), when 
the value of Oh is sufficiently large. Intuition further dictates that for smaller values of 
Oh, inertial effects should be more pronounced and drop rebound should occur. However, 
for even smaller values of Oh, unexpectedly the drops coalesce before rebounding. This 
apparent contradiction is resolved by realizing that when viscous resistance to flow and 
hence drainage of the film separating two drops is lower, the drops are able to get closer 
to one another on the first approach. Thus, when this distance on first approach is 
sufficiently small for van der Waals forces to become important, the film is able to rupture 
rapidly before pressure in the film can rise and oppose the approach of the drops toward 
each other. The correctness of this surmise can be readily verified by artificially turning 
off the van der Waals forces at extremely low values of Oh (e.g. Oh = 0.005). As shown in 
figure 15(c), whereas two low-viscosity drops of Oh = 0.005 rapidly coalesce, two drops 
of the same Oh but with van der Waals forces turned off (Oh = 0.005, (vdW terms 
turned off)) bounce back to a greater extent than two drops of slightly higher viscosity 
of Oh = 0.023. 

5. Conclusions 
The approach, collision, and coalescence dynamics of two drops suspended in a second 

liquid where both fluids are incompressible, Newtonian fluids of constant physical 
properties have been studied using a multi-scale, method of lines, arbitrary Lagrangian



26 K. Sambath et al 

t

z m
in

0 10 20 3010-5

10-4

10-3

10-2

10-1

100 Oh = 0.008
Oh = 0.023
Oh = 0.065

t

z m
in

0 50 100 150 200 25010-5

10-4

10-3

10-2

10-1

100 Oh = 0.108
Oh = 0.180
Oh = 0.300
Oh = 0.500

(a) (b) 

t

z m
in

0 10 20 3010-5

10-4

10-3

10-2

10-1

100 Oh = 0.023
Oh = 0.005
Oh = 0.005
(VdW terms
turned off)

(c) 

Figure 15. (a) Time variation of zmin for low, intermediate, and high values of Oh corresponding 
to before, at, and after the “spike” in Figure 14 (m2 = 1, γ2 = 1, U∞ = 0.05, and A = ).10−10

The drop trajectories reveal that the increase in drainage time and hence the “spike” is because 
the drops of intermediate values of Oh do not coalesce on first approach, rebound, and finally 
do coalesce on the second approach. (b) Time variation of zmin for more viscous systems (higher 
Oh values of 0.108 < Oh < 0.5) showing no rebound effect and that the drops coalesce on 
first approach. (c) Time variation of zmin for a less viscous or a more highly inertial system 
(Oh = 0.005) shows that the drops coalesce on first approach. However, if the van der Waals 
forces are artificially turned off when Oh = 0.005, the drops bounce to a further extent than 
when the Ohnesorge number is larger (Oh = 0.023) but the van der Waals forces are on. 

Eulerian algorithm that utilizes the Galerkin finite element method and elliptic mesh 
generation for spatial discretization and adaptive finite differences for time integration. 
The multi-scale nature of the problem is dictated by the fact that whereas the two drops 
initially each have a dimensionless radius of one and center-to-center separation equal 
to some order one multiple of their radii, the thickness of the film of the exterior liquid 
that separates the approaching drops has to fall by roughly five orders of magnitude 
before film rupture and hence coalescence can be said to have occurred (for example, if 
the radii of the undisturbed drops are 1 mm, a dimensional film thickness of 10 nm or a 
dimensionless film thickness of 10−5 has to be reached before coalescence is said to have 
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occurred). Here, accurate resolution of the dynamics occurring over such disparate length 
scales has been made possible by use of the aforementioned sharp interface algorithm 
(Castrejón-Pita et al. 2015) [see also Li & Sprittles (2016) who have used algorithms 
that are similar to ours]. Variants of the algorithm employed in this paper have already 
been used successfully to resolve pinch-off (Suryo & Basaran 2006; Castrejón-Pita et al. 
2015; Kamat et al. 2018), film rupture (Garg et al. 2017) and post-coalescence (Munro 
et al. 2015; Anthony et al. 2017) dynamics involving drops, films and bubbles where 
length scales that differ by 4-6 orders of magnitude are commonly encountered, and the 
most advanced versions of which can achieve yet bigger disparities in length scales of the 
order of 107 or larger (Anthony & Basaran 2018, 2019). According to the results of the 
foregoing analysis, inertia plays a key role in delaying drop coalescence by causing two 
colliding drops to rebound one or more times before finally coalescing. Also according to 
the foregoing analysis, whereas inertia of the drop fluid is crucial to giving rise to rebound 
effects, its absence results in coalescence dynamics that are similar to those observed 
in Stokes flow. Plainly, existing scaling theories for film drainage and coalescence times 
need to be revisited and carefully revised when inertial effects are important. 

A situation that is related to that studied in the present paper arises in applications 
such as sprays and combustion where two drops collide in a gas (Qian & Law 1997) or 
when a drop falls through a gas onto a bath of the same liquid as the drop (Couder 
et al. 2005; Geri et al. 2017). In these problems also, the thin lubricating air layer 
between the two drops or the drop and the bath must drain to a critical thickness before 
coalescence is initiated by intermolecular forces. Moreover, as in this work, the collision 
between the two liquid surfaces can lead to a rebound (Rayleigh 1899; Qian & Law 
1997). In fact, a drop colliding with a liquid bath can be prevented from coalescing and 
be made to undergo oscillatory bouncing or rebounding for an arbitrarily long time by 
vertically vibrating the bath (Walker 1978; Couder et al. 2005). A distinguishing feature 
of studies where a drop may repeatedly bounce on a liquid surface is that the viscosity 
ratio between the inner (drop) and the outer (gas) fluids in such studies is between 
five thousand and a million whereas it is between 0.1 and 10 in the present paper. 
Moreover, whereas the two fluids in our paper are of nearly equal densities, the density 
contrast in these other studies is about 1,000. Therefore, viscous dissipation in the films 
separating the two drops in our paper is much larger than that in these other studies. 
This difference makes the phenomenon of drop bouncing all the more remarkable and 
unexpected in our case compared to the other studies where the surrounding fluid is a gas. 

The results presented in this paper can be extended in a number of other fruitful 
directions as summarized in this and the following paragraphs. As discussed earlier in 
the paper, the dynamics of coalescence is governed by five dimensionless groups when 
the drops have the same radii. For most liquid-liquid systems, the density ratio γ2 

is approximately equal to one. Therefore, it would be highly desirable to conduct a 
comprehensive study in the future to determine the effect of the Ohnesorge number Oh, 
the viscosity ratio m2, the dimensionless approach velocity U∞, and the ratio of the radii 
of the two drops R1/R2 even in situations in which the drops have the same densities 
and the van der Waals number A is held fixed on the coalescence dynamics paying 
particular attention to drop rebound and its effect on scaling theories for drainage times. 
The dependence of drainage times on both approach velocity and ratio of drop radii 
will be especially significant in industrial coalescers with agitators where large spatial 
variations in flow and drop sizes can occur (Bajpai et al. 1976). 
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The drainage and coalescence dynamics can be significantly altered by the presence 
of surfactants and/or surface-active chemicals. Many industrial applications involve 
emulsions containing emulsifying agents and contaminants. It has been shown 
experimentally (Hu et al. 2000) and computationally (Chesters & Bazhlekov 2000; 
Dai & Leal 2008; Vannozzi 2012) that under Stokes flow conditions, film drainage slows 
down significantly in the presence of surfactants and that coalescence may even be 
altogether inhibited. However, many industrial applications involve systems where the 
fluids are not undergoing Stokes flow and where inertia cannot be neglected. 

A very popular and successful technique to destabilize emulsions in applications 
involves the use of electric fields which greatly increases the chance of drops approaching 
each other and ultimately coalescing (Zhang et al. 1995). Moreover, electric fields 
have also been deployed in quantifying the stability of emulsions. Among other things, 
recent experiments of Ristenpart et al. (2009) have shown that contrary to conventional 
wisdom, oppositely charged drops may not necessarily coalesce when brought together. 
Clearly, thorough and careful computational analyses of drop coalescence under an 
applied electric field will go a long way toward improving the existing understanding of 
the underlying dynamics and broadly impact the usefulness and efficiency of electrically 
enhanced coalescers and separators that are widely used in the oil, gas, and chemical 
industries (Ptasinski & Kerkhof 1992; Eow & Ghadiri 2002). The numerical methods 
utilized by Collins et al. (2008) and Collins et al. (2013) for studying electrohydrodynamic 
tip-streaming from liquid drops and films can be combined with the methods used in 
this paper to rigorously model the electrocoalescence of drops. We plan to report the 
results of such studies in the future. 

In certain situations, the drops can collide off-center and the dynamics will not be 
axisymmetric as in this paper. A number of researchers have already addressed off-center 
or asymmetric collisions where the flow is fully three-dimensional but all such studies 
where the dynamics of the thin film separating the two drops have been well resolved 
pertain to situations where inertia is negligible and the dynamics can be described by the 
creeping flow equations rather than the nonlinear Navier-Stokes equations solved in this 
paper (Zinchenko et al. 1997; Rother et al. 1997; Rother & Davis 2001). The approach 
based on the Galerkin finite element method used to analyze axisymmetric flows in 
this paper has been extended to fully three-dimensional flows with inertia (Cairncross 
et al. 2000; Baer et al. 2000) and, in very recent work, Tsamopoulos and coworkers 
(Fraggedakis et al. 2017) have implemented the elliptic mesh generation algorithm that 
has been successfully used in this paper to solve three-dimensional free surface flows. 
Despite their promise, it has not been demonstrated in these recent papers that disparities 
in length scales that arise during studies of drop coalescence can be resolved by these 
three-dimensional algorithms. Therefore, another goal of future work will be to analyze 
the fluid mechanics of off-axis collisions and its effect on coalescence and/or drainage 
times by appropriately combining certain features of the multi-scale algorithm used in 
this paper with advances reported in these recent publications. 
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