18 research outputs found

    Characterisation and comparison of 3D printed and glass moulded optics

    Get PDF

    A Proteomics Approach to Investigate miR-153-3p and miR-205-5p Targets in Neuroblastoma Cells

    Full text link
    MicroRNAs are key regulators associated with numerous diseases. In HEK293 cells, miR-153-3p and miR-205-5p down-regulate alpha-synuclein (SNCA) and Leucine-rich repeat kinase 2 (LRRK2), two key proteins involved in Parkinson’s disease (PD). We have used two-dimensional gel electrophoresis (2D-PAGE) coupled to mass spectrometry (MS) to identify a spectrum of miR-153-3p and miR-205-5p targets in neuronal SH-SY5Y cells. We overexpressed and inhibited both microRNAs in SH-SY5Y cells and through comparative proteomics profiling we quantified ~240 protein spots from each analysis. Combined, thirty-three protein spots were identified showing significant (p-value \u3c 0.05) changes in abundance. Modulation of miR-153-3p resulted in seven up-regulated proteins and eight down-regulated proteins. miR-205 modulation resulted in twelve up-regulated proteins and six down-regulated proteins. Several of the proteins are associated with neuronal processes, including peroxiredoxin-2 and -4, cofilin-1, prefoldin 2, alpha-enolase, human nucleoside diphosphate kinase B (Nm23) and 14-3-3 protein epsilon. Many of the differentially expressed proteins are involved in diverse pathways including metabolism, neurotrophin signaling, actin cytoskeletal regulation, HIF-1 signaling and the proteasome indicating that miR-153-3p and miR-205-5p are involved in the regulation of a wide variety of biological processes in neuroblastoma cells

    Inkjet Printing of PEDOT:PSS Based Conductive Patterns for 3D Forming Applications

    No full text
    This paper presents the formulation, inkjet printing, and vacuum forming of a conductive and stretchable polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), ink on a stretchable and transparent thermoplastic polyurethane (TPU) substrate. The formulation of the conductive and stretchable ink is achieved by combining PEDOT:PSS with additional solvents, to achieve the right inkjet properties for drop-on-demand (DoD) inkjet printing. A conductive pattern can be printed from the 21 µm orifice on a flexible and stretchable TPU substrate, with a linewidth down to 44 µm. The properties of the printed pattern, in terms of sheet resistance, morphology, transparency, impact of weather conditions, and stretching are investigated and show sheet resistances up to 45 Ohm/sq and transparencies as high as 95%, which is comparable to indium tin oxide (ITO). Moreover, in contrast to ITO, one-time stretching up to 40% can be achieved, increasing the sheet resistance up to 214 Ohm/sq only, showing the great potential of this ink for one-time stretching. Finally, as a proof of this one-time stretching, the printed samples are vacuum formed around a 3D object, still showing sufficient conductivity to be applied as a capacitive touch sensor

    Estimating the cost of corrosion in Indian industry

    No full text
    Industries in India play an important role in the economic growth of country. These industries face challenging conditions in effective corrosion estimation, prevention and control. In today’s tough competition from fast growing China and other Asian countries, it has become necessary for the Indian industries to increase the production by minimizing the loss of shutdown and any accidents and at the same time optimal use of manpower and money. The cost of corrosion in chemical, manufacturing, transportation, oil and gas, petrochemical, refineries contribute an alarming proportion of the total cost of corrosion among all industries. This paper gives an overview of cost of corrosion in India and its relation with GDP. According to a recent report (NACE, India chapter) the corrosion cost in any developing country is predicted by 5% of the GDP. For India the cost of corrosion is estimated to be 36,000 Crores INR in 2008. This is about half of our defence budget and perhaps double of our total annual expenses on education. This is, therefore an enormous sum, which needs immediate attention and future strategy to minimize it and make our industry safer and accident-free. In this paper the forecasting methods were used to predict the corrosion cost for next 10 years for India. First the correlation between the corrosion cost, GDP and Index of Industrial Production (IIP) were established and then forecasting techniques were used to predict the future loss due to corrosion

    Deficiency of the Lysosomal Protein CLN5 Alters Lysosomal Function and Movement

    No full text
    Batten disease is a devastating, childhood, rare neurodegenerative disease characterised by the rapid deterioration of cognition and movement, leading to death within ten to thirty years of age. One of the thirteen Batten disease forms, CLN5 Batten disease, is caused by mutations in the CLN5 gene, leading to motor deficits, mental deterioration, cognitive impairment, visual impairment, and epileptic seizures in children. A characteristic pathology in CLN5 Batten disease is the defects in lysosomes, leading to neuronal dysfunction. In this study, we aimed to investigate the lysosomal changes in CLN5-deficient human neurons. We used an induced pluripotent stem cell system, which generates pure human cortical-like glutamatergic neurons. Using CRISPRi, we inhibited the expression of CLN5 in human neurons. The CLN5-deficient human neurons showed reduced acidic organelles and reduced lysosomal enzyme activity measured by microscopy and flow cytometry. Furthermore, the CLN5-deficient human neurons also showed impaired lysosomal movement—a phenotype that has never been reported in CLN5 Batten disease. Lysosomal trafficking is key to maintain local degradation of cellular wastes, especially in long neuronal projections, and our results from the human neuronal model present a key finding to understand the underlying lysosomal pathology in neurodegenerative diseases

    Direct writing – the printing of electronics of tomorrow

    No full text
    DSP Valley scientific magazinestatus: Published onlin

    Neuroproteomic Analysis after SARS-CoV-2 Infection Reveals Overrepresented Neurodegeneration Pathways and Disrupted Metabolic Pathways

    No full text
    Besides respiratory illness, SARS-CoV-2, the causative agent of COVID-19, leads to neurological symptoms. The molecular mechanisms leading to neuropathology after SARS-CoV-2 infection are sparsely explored. SARS-CoV-2 enters human cells via different receptors, including ACE-2, TMPRSS2, and TMEM106B. In this study, we used a human-induced pluripotent stem cell-derived neuronal model, which expresses ACE-2, TMPRSS2, TMEM106B, and other possible SARS-CoV-2 receptors, to evaluate its susceptibility to SARS-CoV-2 infection. The neurons were exposed to SARS-CoV-2, followed by RT-qPCR, immunocytochemistry, and proteomic analyses of the infected neurons. Our findings showed that SARS-CoV-2 infects neurons at a lower rate than other human cells; however, the virus could not replicate or produce infectious virions in this neuronal model. Despite the aborted SARS-CoV-2 replication, the infected neuronal nuclei showed irregular morphology compared to other human cells. Since cytokine storm is a significant effect of SARS-CoV-2 infection in COVID-19 patients, in addition to the direct neuronal infection, the neurons were treated with pre-conditioned media from SARS-CoV-2-infected lung cells, and the neuroproteomic changes were investigated. The limited SARS-CoV-2 infection in the neurons and the neurons treated with the pre-conditioned media showed changes in the neuroproteomic profile, particularly affecting mitochondrial proteins and apoptotic and metabolic pathways, which may lead to the development of neurological complications. The findings from our study uncover a possible mechanism behind SARS-CoV-2-mediated neuropathology that might contribute to the lingering effects of the virus on the human brain

    Verification of differentially expressed proteins by Western blot analysis and ROS changes in response to miR-153-3p and miR-205-5p.

    No full text
    <p>Western blot analysis showing effect of miR-153-3p mimic on (A) PRDX2 and HMGB1 levels (B) effect of miR-153-3p antagomir on Cfl1 levels, (C) effect of miR-205-5p mimic on PRDX2, NACA and Cfl1 levels, (D) effect of miR-205-5p antagomir on NACA and Cfl1 levels. (E) Quantification of ROS levels in SH-SY5Y cells by modulating miR-153-3p and miR-205-5p levels. Percentage change in DCF fluorescence compared to control is shown. (F) Proposed pathway for ROS reduction due to miR-153-3p and miR-205-5p by regulation of PRDX2. Error bars indicate SEM (n = 3); *, <i>p</i> < 0.05; **, <i>p</i> < 0.01, ***; <i>p</i> < 0.001.</p
    corecore