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Abstract

In 3D printing or additive manufacturing solid objects can be fabricated from a digital

file. The Printopticalr technology is a specialized method for fabricating optics. Typ-

ically, optics is fabricated by moulding or grinding and polishing technologies, which

have time and cost disadvantages. They are also limited by complex structures and

they usually need post-processing. Compared to moulding or grinding and polishing

technologies the Printopticalr technology can fabricate complex optics within min-

utes instead of weeks. It has cost advantages because no tooling is needed and it does

not need post-processing.

In this work the surface quality of optics from the next generation 3D printer based

on the Printopticalr technology is examined. The results are compared with previous

generation equipment. We study surface roughness, surface profile, scattering, and

manufacturing defects of the 3D printed optics. The quality of 3D printed optics is

compared with the quality of optics, which is fabricated by glass moulding technology.
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Chapter I

Introduction

In manufacturing we typically use a tool that can fabricate objects from raw mate-

rials. The tool can convert raw materials into solid objects, which are needed in our

daily life. In short, this technology makes our life simple.

Over the last two decades, industries have a focus on a class of manufacturing

technologies, e.g., moulding, joining, and casting. But these technologies are limited

upto certain stage. The tools cannot fabricate all kind of objects, and the cost of

these tools is high. Sometimes, weeks or even months are needed to fabricate tools:

the conventional processes are time-consuming. Most of the time industries are fac-

ing challenges by these conventional technologies.

Some of the limitations of manufacturing can be overcome by 3D printing or addi-

tive manufacturing. This technology can fabricate objects by adding a patterned

layer upon layer. It can also fabricate complex structures. It has cost and time

advantages because of no need of tooling. It introduces a new material processing

technique that is known as Solid Freeform Fabrication (SFF), desktop manufactur-

ing or fast freeform manufacturing.

The SFF technology is efficient and environmentally friendly. It follows non-contact

deposition technique so that it can print on non-planer surfaces. It has a low mate-

rial waste. It can fabricate complex structures and it involves with different kind of

3D printing technologies. It can even fabricate optics by inkjet printing technology.
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Inkjet printing involves transferring electronic data from a computer to, e.g., pa-

per known as two-dimensional printing. Inkjet printing is a process where a droplet

of ink is ejected from a print head onto a printing medium. It is based on the pro-

cess that was introduced by Lord Rayleigh in 1878, how droplets are produced from

liquid stream [1]. The operating principle of inkjet device was patented in 1948 [2].

In 1971 it is demonstrated that a droplet can be created by applying a pressure

wave pattern to an ink stream [3]. Inkjet printing technology was developed in the

late 1970s. Small volumes of ink were ejected from a print head. But the repetition

rate of the ejection was high under digital control, which increased the possibility of

misprints. The printing quality is decreased by misprints. After that, the technology

is developed and now it is available in office and household. Graphical printing by

inkjet printing technology is valuable in the market, which means that its future is

promising.

In recent years, for industrial manufacturing two-dimensional inkjet printing is con-

verted into Three Dimentional Inkjet Printing (3DIP). It can deposit picoliter vol-

umes of liquid as a well-defined pattern on a substrate. The printing process con-

tinues by adding a layer after layer even thousands of times to form an object. This

process can produce a complex pattern by using computer-controlled translation

stages and ink-dispensing. 3D inkjet printing has applications in pharmacy, chem-

istry or bio-chemistry, building three-dimensional (3D) objects, organic electronics,

nanotechnology, and tissue engineering. As an example, the 3DIP technology is

used for the manufacturing of micro-chemical parts and micro-optical parts, e.g.,

waveguides and micro lenses [4], polymer-light-emitting diode (PLED) displays and

polymer electronics [5]. It has the following advantages: rapid prototyping, high ca-

pability, high precision dispensing, non-contact multi-material deposition, low ma-

terial waste, low cost, and 3D patterning.

Nowadays, the 3D printing of optics is attractive. Printing parameters and fluid

properties after the deposition are important. The fabrication of macroscopic op-

tics by 3D printing technology is challenging. The surface quality of 3D printed

optics can be improved by post-processing such as polishing or coating. But these

post-processing techniques are time and money consuming. LUXeXceL [6] invented

the Printopticalr technology that can fabricate optics without the need for post-
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processing.

Any kind of optics cannot be used for imaging. The measurement of surface qual-

ity of optics is important for qualification. The surface roughness of optics from

LUXeXceL′s previous generation equipment was 24 nm (62×47 µm2) [7]. LUXeX-

ceL is launching the next generation equipment. In this work the surface quality of

optics from LUXeXceL’s next generation equipment is investigated. The measured

results are compared with previous generation equipment and imaging optics quality.

In this thesis we also characterize and compare 3D printed optics from LUXeXceL

and glass moulded optics from Oplatek [8].

In Chapter II different kind of additive manufacturing technologies, which can fab-

ricate solid objects are introduced. Different kinds of inkjet printing processes, fluid

properties and challenges for inkjet printing are considered in Chapter III. Chapter

IV describes characterisation methods for 3D printed optics. In Chapter V surface

roughness, surface waviness, and scattering of 3D printed optics and glass moulded

optics are measured and compared. Conclusions are presented on Chapter VI. Fu-

ture work is outlined on Chapter VII.
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Chapter II

3D printing technology

In this chapter different kind of 3D printing technologies followed by Solid Freeform

Fabrication (SFF) are described.

2.1 Solid Freeform Fabrication

Solid Freeform Fabrication (SFF) is used to fabricate solid prototype models by tak-

ing information from 3D modelling software, e.g., a Computer-Aided-Design (CAD)

file. Designers can check the function and appearance of these prototypes before

fabrication. In the first step of SFF the design of a prototype is created by using

a modelling programme followed by sending the design to a CAD software. The

software will break the design into hundreds or thousands of thin layers. The pre-

pared file is further sent to the machine that fabricates designed model by adding a

patterned layer upon layer (Fig. 2.1). The main two advantages of the process are:

(1) giving designers more freedom that they can draw their design more efficiently

and (2) low material waste.

Nowadays, different kind of SFF technologies are available in the market. SFF

can fabricate complex parts by common stock materials, e.g., liquid, powder, and

thermoplastics. SFF technology includes stereolithography (SLA), fused deposition

modelling (FDM), selective laser sintering (SLS), three-dimensional inkjet printing

(3DIP) etc. In SLA technology complex photopolymer shapes are fabricated by

using light to solidify selective portion of liquid photocurable resins. In SLS tech-

nology, powder is used as raw material and powdered layers are sintered selectively

by laser. The material for FDM technology is thermoplastics and it is melted above
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its melting point to create a layer, which solidifies by natural cooling. In 3DIP tech-

nique, objects are fabricated by the deposition of ink-jets.

2.1.1 Selective Laser Sintering (SLS)

In the first step of the SLS process, to create a layer, powder material is spread out

and levelled onto the surface of a support stage. A portion of layer is selected by

3D modelling software and it is fused by high energy laser. After the first layer is

fabricated, the support stage moves downward at a distance, which is the thickness

of the fabricated layer. The next layer is constructed above the fabricated layer

by similar process and by adding a layer upon layer the process continues until the

object is built. All subsequent layers are fused together by laser energy. After the

object is fabricated, it is separated from loose powder (Fig. 2.2).

In SLS process the final object consist with borders due to laser sintering of high

melting point. The surface quality of the final object must be improved by post-

processing. Another disadvantage of this technique is that parts in the machine take

a long time for cooling [9].

2.1.2 Fused Deposition Modelling (FDM)

In FDM technology powder is used as raw material. It is mixed with thermoplastic

polymer or wax binder. By mixing, granulating, and extruding with rollers, the ma-

terials are made flexible and continuous. It is brought up into a movable and heated

nozzle to melt it above its melting point. The print-head moves and ejects material

according to the shape of the layer, which is created by 3D modelling software. The

layer solidifies by natural cooling and every next layer makes a bond with previous

layers. Adding a layer upon layer process continues until the 3D object is built (Fig.

2.3).

The surface quality of the fabricated part is not good enough for high-quality appli-

cations before post-processing due to internal defects. These defects occur because

of poor bonding between layers [10,11].
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Figure 2.1: Schematic drawing of Solid Freeform Fabrication (SFF).

Figure 2.2: Schematic drawing of the Selective Laser Sintering (SLS) process.
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2.1.3 Stereolithography (SLA)

In Stereolithography (SLA) at the first step liquid chamber is filled with liquid

monomer. The support platform enters into the liquid chamber to create the first

thin liquid monomer layer. The layer is polymerized by ultraviolet (UV) radiation

from a laser. The support platform moves downward to create next thin liquid

monomer layer above the first fabricated one. Recoat blade moves across the liquid

surface to make the desired thickness of the next layer. The next layer is polymer-

ized by similar way and adding a layer upon layer process continues until the final

3D object is built. The support platform is raised up to remove the final object from

the support platform (Fig. 2.4) [12].

The typical 3D printer based on SLA’s technology cannot be used to print op-

tics because objects consist of borders. When next layer start to fuse with previous

layer, the border arises. The surface roughness of final part increase because of the

borders.
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Figure 2.3: Schematic of Fused Deposition Modelling (FDM) apparatus.

Figure 2.4: Working process of a 3D printer based on Stereolithography

(SLA) technology.
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Chapter III

Ultraviolet (UV) curable inkjet printing

The fabrication of optics by 3D printing technology is challenging. The optics can

be fabricated by UV curable inkjet printing technology. So this chapter has focus

on inkjet printing technology and material properties of UV curable inkjet printing

technology. In UV curable inkjet printing droplets are created from the stream of

ink. They are ejected from a computer controllable moving print head and deposited

on a substrate. Liquid has connecting property that is called surface tension of a

liquid. For example, when two small droplets connect with each other, it will form

a big droplet. Based on this principle, deposited droplets on the substrate con-

nects with each other and form a continuous patterned layer that is polymerized

by UV light. A printing stage moves downward at a distance which is equal to the

thickness of the first layer. Then next layer is fabricated above the first layer and by

adding a layer upon layer the process continues until the 3D object is built (Fig. 3.1).

Inkjet printing is classified by continuous inkjet printing and drop-on-demand (DOD)

inkjet printing [13,14].

3.1 Continuous inkjet printing

In continuous inkjet printing droplets are ejected from the print head continuously.

The continuous inkjet printer can be classified by binary deflection system and mul-

tiple deflection system.
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Figure 3.1: Diagram of ultraviolet (UV) curable inkjet ptinting.

3.1.1 Binary deflection system

Figure 3.2 shows continuous stream of ink that is piezoelectrically pulsed and ejected

from a drop generator. It passes through a charge electrode and breaks into droplets

that are either charged or uncharged. Uncharged droplets fly straight and they are

deposited on the substrate. The charged droplets are deflected by a high voltage

deflection plate and collected by a gutter for recycling.

3.1.2 Multiple deflection system

The operating principle of a multiple and binary deflection system is same but in the

former one charged droplets are deflected by a high voltage deflection plate and de-

posited onto the substrate at different positions. The uncharged droplets fly straight

and they are collected by a gutter for recycling (Fig. 3.3). Continuous inkjet printers

are used for high speed printing, e.g., bar codes, and sell-by dates.

Surface quality from continuous inkjet printing system is not good enough for optics

because the user does not have control on droplets as droplets are ejected continu-
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Figure 3.2: Binary deflection system.

Figure 3.3: Multiple deflection system.
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ously from the print head. The probability of drop deposition at unwanted positions

is high, which increases the possibility of misprinting. The surface quality is de-

creased by misprints (see Section 3.4).

3.2 Drop-on-demand (DOD) inkjet printing

In drop-on-demand (DOD) inkjet printing a droplet is ejected from a print head only

when it is required for printing. Five types of DOD inkjet printers are available:

piezoelectric, thermal, electrohydrodynamic (EHD), cavity collapse, and acoustic

inkjet printing.

3.2.1 Piezoelectric DOD inkjet printer

The nozzle for the piezoelectric DOD inkjet printing technology is fabricated from

piezoceramic materials. There are three types of piezoelectric DOD inkjet printers:

squeeze mode actuator, bend mode actuator, and push mode actuator [15]. The

operating principle of the actuators is following:

Squeeze mode actuator: The print head is fabricated from a piezoelectric ce-

ramic tube. The transducer is connected to the outer surface of the tube. The

droplet is ejected from the orifice, when a short rise time voltage pulse that causes

contraction of the tube, is applied to the transducer (Fig. 3.4).

Bend mode actuator: A diaphragm is attached to one side of a pressure chamber.

A piezo-ceramic plate is attached to the diaphragm. The outer surface of the plate

consists of conductive coating that transfers electrical connection to the plate. When

a voltage is applied to piezo-ceramic plate, it contracts and it causes diaphragm to

move inside the pressure chamber. Due to the internal pressure, droplet will be

ejected from an orifice (Fig. 3.5). Droplet size depends on orifice diameter, voltage

of the pulse, and pulse duration [16].

Push mode actuator: Figure 3.6 shows that when a voltage pulse is applied

to a piezo-ceramic rod, it contracts and pushes diaphragm inside a pressure cham-

ber. Due to the internal pressure, droplet will be ejected from an orifice. A thin

diaphragm prevents unwanted interaction between ink and ceramic rod.
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Figure 3.4: Diagram of squeeze mode actuator.

Figure 3.5: Diagram of bend mode actuator.
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3.2.2 Thermal DOD inkjet printer

In a thermal drop-on-demand inkjet printer, when voltage pulse is applied to a

heater, ink is superheated and it achieves its critical temperature for bubble nucle-

ation (Fig. 3.7). The bubble starts to expand and force the ink out from a orifice.

When the temperature starts to diminish, bubble begins to collapse and create a

droplet that is deposited on a substrate. Because of capillary force, ink chamber

will be refilled and the process can be started again [13].

The droplet and nozzle diameters are identical for piezoelectric and thermal DOD

inkjet printing technology. But smaller droplet from larger nozzle diameter can be

achieved by using the following processes:

3.2.3 Electrohydrodynamic DOD inkjet printing

Liquid can be drawn from a nozzle when electric field is applied to the liquid [17–20].

Figure 3.8 shows that electric field applied to the liquid, creates a Taylor cone at

the tip of an orifice. A droplet is ejected from the tip of the Taylor cone.

3.2.4 Cavity collapse DOD inkjet printing

Cavity collapse can be used to achieve a Worthington jet from a large nozzle [21,22].

Figure 3.9 shows that when negative pressure is applied to ink, a cavity is created.

The cavity is converted into collapse by changing negative pressure into positive

pressure. Therefore, a thin jet eventually breaks up from violent collapse and a

droplet is created. The diameter of droplet is smaller than the nozzle diameter [21].

3.2.5 Acoustic DOD inkjet printing

Figure 3.10 shows piezoelectric transducer attached to one end of a buffer rod. The

other end is connected to an acoustic lens, which is filled with ink. Sound wave

is generated from the buffer rod when radio frequency (rf) pulse is applied to a

transducer. The sound wave propagates towards the acoustic lens that focuses on

the surface of the ink. The sound wave is transmitted by the acoustic lens and a

droplet is ejected from the surface of the ink. High energy of the sound wave is

needed to eject a droplet from the surface of the ink [23].
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Figure 3.6: Diagram of a push mode actuator.

Figure 3.7: Diagram of thermal DOD inkjet printing.
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Figure 3.8: Diagram of electrohydrodynamic DOD inkjet printing technology.

Figure 3.9: Diagram of cavity and collapse DOD inkjet printing technology:

(a) liquid surface is in steady state, (b) cavity is created by negative pres-

sure, (c) extended collapse, (d) droplet is produced from collapse by positive

pressure, (e) collapse retracts, and (f) liquid surface regains initial state.
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Figure 3.10: Diagram of acoustic DOD inkjet printing technology.

3.3 Ink properties of DOD inkjet printing

Formation of drops from the stream of ink is complex. The properties of a drop

depend on a number of dimensionless constants: Reynolds (Re), Weber (We), and

Ohnesorge (Oh) numbers

Re =
vρa

η
(3.1)

We =
v2ρa

γ
(3.2)

Oh =

√
We

Re
=

η
√
γρa

(3.3)

where ρ, η, γ, v, and a are the density, kinematic viscosity, surface tension, velocity,

and drop diameter, respectively.

Drop formation is characterized by the Ohnesorge number, which was identified

by Fromm [24]. He proposed that for stable drop generation Z > 2, where Z =1/Oh.

The work was rechecked by Resis and Derby. They used numerical simulation of

drop formation and proposed that 10 > Z > 1 for stable drop generation [25]. At
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high values of Z, ejected drop connects with a large number of satellite droplets

and for small values of Z, viscous dissipation does not allow drop ejection from an

orifice. The surface tension prevents liquid to eject from the nozzle. The barrier can

be overcome by the minimum velocity vmin.

vmin =

(
4γ

ρdn

) 1
2

(3.4)

where dn is the nozzle diameter.

For imaging optics, surface roughness is an important issue. The relation between

We, Re and f(R) was first proposed by Stow and Hadfield [26].

We
1
2Re

1
4 > f(R) (3.5)

where f(R) is the function of surface roughness.

For flat and smooth surfaces f(R) ≈ 50 [27]. Typically, for imaging application

the limit of root-mean-square roughness is as low as 5 nm. f(R) especially depends

on γ and η.

According to Young’s equation the surface free energy of solid (substrate) is de-

fined by

ξs = ξsl + γ · cosθ (3.6)

where ξsl is the interfacial tension between solid and liquid, and θ is the contact

angle between drop and solid (Fig. 3.11). The surface quality of optics can be im-

proved by proper θ. If ξs is higher than γ, then θ improves. Poor γ causes poor

contact between ink and inner surface of nozzle. The drop ejects from the nozzle

spontaneously, which increases the possibility of misprints.

There have two types of fluid: Newtonian and Non-Newtonian. Newtonian fluid is

used as printing material because of low η, which makes the droplet surface smooth.

Furthermore, research is necessary to use Non-Newtonian fluid as printing material.

Two other major factors to improve surface quality are ρ and a. Droplets are

spattered on a substrate because of the distance between the print head and the

18



substrate. Higher ρ prevents spattering and produce droplet with proper shape.

Small a and proper distance between deposited droplets improve surface quality.

3.3.1 Drop behaviour and spreading

Drop behaviour on a solid surface depends on inertial forces, capillary forces, and

gravitational forces. The gravitational force depends on an important dimensionless

parameter, called bond number B0.

B0 =
ρga2

γ
(3.7)

where g is the gravitational force.

Typically, fluid density 1000 kg/m3, surface energy below 0.1 J/m2, and drop density

below 100 µm is used for inkjet printing. Because of high surface energy B0 << 1,

gravitational forces can be neglected. Yarin [28] used a fluid that v range was 1-30

m/s, and a range was 100-3000 µm, to check drop behaviour on the substrate. He

examined that the diameter of the droplet increases with respect to time (Fig. 3.12).

Dimensionless time after impact is defined by

t = t0
v

a
(3.8)

where t0 is the initial time [29].

For small values of t (e.g., t=0.1), surface tension plays an important role to con-

trol the drop, and viscous force prevents oscillation and spreading. At larger values

of t, droplet diameter a, which is controlled by capillarity, increases [30]. Contact

diameter (dcon) of the final drop is defined by

dcon = a 3

√
8

tan θeqm
2

(3 + tan2 θeqm
2

)
(3.9)

where θeqm is the equilibrium contact angle (dcon ≈ 3a for θeqm = 100).

The final drops connect with each other to form a patterned layer.

19



Figure 3.11: Diagram of contact angle.

Figure 3.12: Schematic illustration of droplet impact on a substrate [31].
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3.3.2 Pattern stability

Davis [32] proposed that fluid line on a flat surface is stable if the contact line

(Fig. 3.13) between them is fixed and the contact angle is <π/2. The proposal

was confirmed experimentally by Schiaffino and Sonin [33]. Liquid beads on a flat

surface are formed by overlapping of drops. If drops do not overlap with each other,

then it is impossible to form liquid beads. Overlapping of drops is possible by the

appropriate contact line between drops. Davis [32] predicted that constant contact

angle causes unstable contact line and this prediction was observed by Schiaffino

and Sonin [33]. If the contact angle consists of hysteresis, then a stable contact line

can be printed that form parallel liquid bead, but sometimes bulges are observed.

Duineveld [34] proposed that, when a newly deposited drop interact with liquid

bead, bulging stability occurs. Figure [3.14 (a)] shows that drops do not interact

with each other, if the drop spacing is large. Drops overlap with each other if the

drop spacing is slightly smaller than the diameter of a footprint, but in that condition

liquid beads are not parallel [Fig. 3.14 (b)]. The liquid bead will be stable by proper

spacing of deposited drops [Fig. 3.14 (c)]. If the spacing between deposited drops

are too small, bulging instability occurs, which mainly depends on drop spacing and

printing speed [Fig. 3.14 (d)].

3.4 Surface quality of printed optics

In addition to material properties, the quality of 3D printed optics is defined by res-

olution that depends on a number of dots/m2. It is important to connect all droplets

together to form a continuous 3D body with smooth surfaces. Surface quality can

be improved by inserting small drops in between large drops, and reducing the large

drop diameter. If the positions of drops are not in the right place, point defects can

be observed.
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Figure 3.13: Diagram of contact line.

Figure 3.14: Schematic illustration of pattern at different drop spacing [35].
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Chapter IV

Characterisation methods

LUXeXceL′s Printopticalr technology is further development of UV curable inkjet

printing (Fig. 4.1). The major advantage of this technology is that final object does

not consist of borders. Without any post-processing it can produce objects with

smooth surface quality. The surface quality of 3D printed optics is measured by

WYKO NT9300 Optical Profilometer. The profile of 3D printed and glass lenses are

observed by 4F imaging and scattering measurement set-ups.

4.1 WYKO NT9300 Optical Profilometer

WYKO NT9300 is a vertical scanning interferometer and it can be used to measure

the surface roughness of object. It can operate in phase shifting interferometry (PSI)

and vertical scanning interferometry (VSI) modes. It is a cost-effective instrument

that has an easy setup, fast data acquisition, and comprehensive analyses. It has a

sub-̊angstrom resolution in PSI mode and nanometer resolution in VSI mode. It is

controlled by vision software.

WYKO NT9300 operates by the principle of Michelson or Mirau interferometer.

The interference fringes are observed when the path difference of interfering wave is

identical. Before starting measurements in PSI mode, field background correction is

needed. This correction can be done by calibrating the instrument with a reference

optics of flatness 1.25 Å. The relation between optics movement and fringe phase

shift is measured by PSI calibration. Similarly, VSI calibration measures the relation

between optics head movement and achieved step height. After the calibration, ref-

erence optics is replaced by 3D printed sample and interference fringes are observed.

23



WYKO NT9300 has systematic measurement errors due to photon shot noise, ther-

mal current, thermal noise, readout noise, quantization noise, background errors,

bias, and miscellaneous errors. The systematic errors can be removed by appropri-

ate corrections (e.g., reference frame). Non-systematic errors can be removed by

averaging. The optical specification of WYKO is shown in Table 4.1. The picture

of WYKO NT9300 optical profilometer is shown in Fig. 4.2.

The measurement with optical profilometer is beneficial compared to an atomic

force microscope and a diamond stylus. An atomic force microscope has long expo-

sure time. It takes several hours for measurement of a small portion of the surface.

The needle diameter of a diamond stylus is required in nano-meter (nm) region to

observe surface quality of 3D printed sample. The needle with such small diameter

hits and makes scratches on sample surface.

Table 4.1

Optical specification of WYKO NT9300 Optical Profilometer.

Objective

Optical specification 2.5× 10× 50×
Numerical aperture 0.07 0.30 0.55

Optical resolution 3.8 µm 0.89 µm 0.49 µm

Working distance 3.5 mm 7.4 mm 3.4 mm

Objective type Michelson Mirau Mirau

The surface of macroscopic optics can be considered smooth if δq << λ, where δq

is root-mean-square (rms) roughness and λ is the wavelength, which is illuminated

on the surface (Fig. 4.3) [37]. The optics surface will have high surface roughness

value if it consists with waviness. But surface roughness can be diminished by ap-

plying filter to the surface (Fig. 4.4).

24



Figure 4.1: Schematic representation of Printopticalr technology [36] (1-

substrate, 2- drops from nozzle, 3- UV lamp, 4- UV light, 5- one layer, 6-

several layers).

Figure 4.2: WYKO NT9300 Optical Profilometer.
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Figure 4.3: Diagram of the optics surface.

Figure 4.4: Diagram of the optics surface (a) without filter, (b) with filter in

order to remove surface waviness.
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4.2 4F imaging

The 4F imaging system is used to create a real image of an object. The f/number

of a lens is defined by

N =
f

D
(4.1)

where f is the focal length and D is the diameter of the lens. The quality of an

image depends on N. Lenses with smooth or rough surface have focal point or spot

(Fig. 4.5). The focal length cannot be measured from the focal spot. Lenses with

focal spot have poor imaging quality that can be observed by the 4F imaging system

(see Section 5.2).

4.3 Scattering

Scattering of light is a process in which light incidents on an object and scattered. It

can be considered as the deflection of light from a straight path. The light scatters

by the smooth surface is identical, so the scattered light is uniform. But in case of

rough surface it is non-uniform. The surface quality of optics can be understood by

the quality of scattered light (e.g., uniform or non-uniform) (see Section 5.3).
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Figure 4.5: Diagram of focal length for a lens with (a) smooth surface and

(b) rough surface.
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Chapter V

Experiments

In this chapter 3D printed optics by LUXeXceL and moulded glass optics by Oplatek

were characterized. 3D printed optics was fabricated by UV curable piezoelectric

drop-on-demand inkjet printing technology (see Section 3.2). Surface roughness,

surface waviness and scattering of light were investigated. The samples printed by

LUXeXceL is shown from Figs. B.1 to B.6.

5.1 Surface roughness

The surface roughness of 3D printed optics and glass moulded optics was measured

by WYKO NT9300 optical profilometer [38]. Before the measurements all samples

were cleaned properly with dilute water. Then the samples were dried by high pres-

sure nitrogen gas to remove dust particles from the surface of the samples. Alcohol

was not used because it can melt the 3D printed samples.

The optical profilometer has phase-shifting-interferometry (PSI) and vertical-scan-

interferometry (VSI) modes. In our measurement PSI mode was used (see Section

4.1). The resolution of an image in VSI mode was too poor. The tilt and curvature

of the samples were removed from measurement data. The approximate size and

thickness of 3D printed flat samples were 2×1.5 cm2 and 2 mm, respectively. Both of

the surfaces were flat and these samples were printed on December, 2014 (Fig. 5.1).

Measured surface roughness of the 3D printed flat samples are shown in Tables 5.1

and 5.2, where δa is area roughness. As 3D printed surface consists with waviness,

roughness value increases with evaluation area (Tables 5.1 and 5.2). Photographs of

the surfaces are shown in Figs. 5.2 and 5.3.
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The surface roughness values are high in Tables 5.1 and 5.2 because 3D printed

surface has also waviness. The waviness can be removed from the surface roughness

measurement by using filtering with specific cutoff wavelength. The cutoff wave-

length was chosen using DIN EN ISO 4288, ASME B46.1 standard. After removing

waviness from the measured data the surface roughness values were improved. The

measured surface roughness with filter are shown in Tables 5.3 and 5.4.

The surface rms roughness value of optics by LUXeXceL’s previous generation equip-

ment was 24 nm (62×47 µm2). But now the quality is improved and it is close to 5

nm (62×47 µm2). The surface of 3D printed optics by LUXeXceL’s previous gener-

ation equipment consisted with point defects (e.g., bumps, nipples, and snowflakes)

[7]. But point defects are removed by LUXeXceL’s next generation equipment.

Figure 5.1: Photographs of 3D printed samples.

The design of both 3D printed and glass moulded prisms were similar and they

were not polished. One of the prism surface consisted with gratings and rest of the

surfaces were flat, which were measured by WYKO NT9300. Approximate length,
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Figure 5.2: Photographs of 3D printed flat sample A by WYKO NT9300 at

evaluation area (a,b) 622×467 µm2, (c,d) 125×94 µm2, and (e,f) 62×47 µm2.
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Table 5.1

Surface roughness of the 3D printed flat sample A, where σ and σm are the standard

deviation and mean of the standard deviation, respectively.

Roughness in nm without filter

Evaluation area in µm2 622× 467 125× 94 62× 47

Number of observation δa δq δa δq δa δq

1 52.5 65.3 4.8 9.7 2.6 5.3

2 36.1 44.5 20.7 36.7 4.2 5.8

3 26.0 32.4 4.6 13.0 3.6 5.0

4 49.0 61.1 4.2 5.5 6.2 8.3

5 27.6 33.4 3.5 4.6 4.0 5.2

6 23.4 30.0 3.7 8.1 3.6 6.3

7 36.4 47.3 8.4 11.0 2.3 3.1

8 40.3 49.5 7.8 9.5 4.0 5.0

9 37.5 46.7 6.7 15.2 5.1 6.1

10 41.3 50.0 5.7 7.5 2.4 3.1

11 90.1 111.2 5.6 14.5 1.6 2.3

12 19.9 24.3 2.0 3.3 1.8 2.4

13 31.7 39.1 3.5 7.0 2.6 3.5

14 105.6 128.6 7.8 9.8 3.3 6.1

15 97.9 121.5 5.9 7.3 2.4 4.2

Mean 47.7 59.0 6.3 10.8 3.3 4.8

σ 27.6 33.8 4.4 7.9 1.3 1.7

σm 1.8 2.3 0.3 0.5 0.1 0.1

height, and slop angle were 3 cm, 2 cm, and 450-500, respectively. Two components

of prism were gluing together as double-sided printing was not possible and it was

printed on December, 2014. Photographs of prisms are shown in Fig. 5.4. Measured

surface roughness of the 3D printed and glass moulded prisms without and with filter

are shown in Tables 5.5, and 5.6, and in Tables 5.7, and 5.8, respectively. The quality

of glass moulded prism is better than 3D printed prism. However, glass moulded

prism can be used in imaging after polishing. Photographs of 3D printed and glass
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Table 5.2

Surface roughness of the 3D printed flat sample B, where σ and σm are the standard

deviation and mean of the standard deviation, respectively.

Roughness in nm without filter

Evaluation area in µm2 622× 467 125× 94 62× 47

Number of observation δa δq δa δq δa δq

1 60.7 73.5 6.5 8.7 2.4 3.2

2 48.0 57.9 4.6 5.7 2.3 3.6

3 20.7 26.9 29.1 55.6 5.2 7.1

4 48.2 58.2 2.5 3.5 2.9 3.6

5 28.7 37.2 5.2 6.7 2.8 4.0

6 37.2 46.4 7.0 8.4 3.5 4.8

7 74.6 91.1 8.4 10.4 3.2 4.2

8 57.7 70.3 4.3 5.8 3.4 4.2

9 13.5 16.9 2.9 5.3 2.1 3.0

10 54.7 67.6 13.0 21.7 2.3 2.9

11 44.2 54.6 3.6 4.6 2.5 3.6

12 68.5 83.1 2.4 3.3 2.6 3.7

13 18.0 22.7 3.8 4.8 2.4 3.9

14 40.1 49.5 3.2 4.5 2.0 2.6

15 37.1 45.3 2.8 4.1 5.1 8.2

Mean 43.5 53.4 6.6 10.2 3.0 4.2

σ 18.2 21.7 6.8 13.4 1.0 1.5

σm 1.2 1.5 0.5 0.9 0.1 0.1

moulded prism surfaces by WYKO are shown in Figs. 5.5 and 5.6. Although the

quality of 3D printed flat samples are better than 3D printed tilt and curve surfaces

(e.g., prism).
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Table 5.3

Surface roughness of the 3D printed flat sample A, where σ and σm are the standard

deviation and mean of the standard deviation, respectively.

Roughness nm with filter

Evaluation area in µm2 622× 467 125× 94 62× 47

Number of observation δa δq δa δq δa δq

1 12.2 20.5 4.5 9.3 2.5 5.3

2 9.0 15.0 12.9 29.6 4.1 5.8

3 9.2 14.8 4.0 12.7 3.5 4.9

4 12.8 21.7 3.6 4.8 6.0 8.1

5 4.9 8.6 3.2 4.4 4.0 5.2

6 7.6 12.3 3.4 7.9 3.5 6.2

7 8.4 13.5 7.2 10.0 2.2 3.0

8 7.9 12.6 6.4 8.0 3.9 4.9

9 6.5 12.1 5.2 14.3 5.0 6.0

10 8.1 12.2 5.3 7.0 2.3 3.0

11 13.1 26.0 3.4 15.6 1.6 2.3

12 3.9 6.7 1.8 3.0 1.8 2.4

13 5.1 9.3 3.1 6.7 2.6 3.5

14 16.4 30.6 4.4 6.1 3.3 6.1

15 17.1 25.2 3.6 4.9 2.4 4.2

Mean 9.5 16.1 4.8 9.6 3.3 4.7

σ 4.0 7.1 2.6 6.7 1.2 1.7

σm 0.3 0.5 0.2 0.4 0.1 0.1

5.2 Surface waviness

The approximate length and height of 3D printed plano-convex lenses were 1 cm and

1-7 mm, respectively. Photographs of the 3D printed lenses are shown in Fig. 5.7.

The surface waviness of 3D printed lenses and glass molded lenses were characterized

qualitatively by using a 4F imaging setup. The schematic of the 4F imaging setup

is shown in Fig. 5.8. Thorlabs [39] grid array R1L353 was used as a test grid. The
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Table 5.4

Surface roughness of the 3D printed flat sample B, where σ and σm are the standard

deviation and mean of the standard deviation, respectively.

Roughness in nm with filter

Evaluation area in µm2 622× 467 125× 94 62× 47

Number of observation δa δq δa δq δa δq

1 8.0 15.8 5.1 7.3 2.3 3.1

2 6.3 12.6 3.2 4.1 2.2 3.6

3 8.1 13.4 19.3 44.6 5.0 6.9

4 9.7 16.8 2.2 3.2 2.8 3.5

5 5.8 10.2 3.9 5.2 2.8 4.0

6 7.0 12.5 4.5 5.6 3.3 4.6

7 11.5 22.1 5.7 7.1 3.1 4.1

8 12.4 20.9 3.6 5.0 3.2 4.0

9 4.4 7.1 2.6 5.0 2.0 2.9

10 8.5 15.8 8.3 16.2 2.3 2.9

11 9.7 16.6 2.6 3.5 2.5 3.5

12 11.4 21.2 2.1 2.9 2.6 3.7

13 5.4 8.2 3.4 4.3 2.4 3.8

14 6.3 11.5 2.9 4.0 1.9 2.5

15 6.1 10.7 2.6 3.8 5.0 8.2

Mean 8.0 14.4 4.8 8.1 2.9 4.1

σ 2.5 4.7 4.3 10.6 1.0 1.5

σm 0.2 0.3 0.3 0.7 0.1 0.1

focal length of lens1 and lens2 were F1 and F2, respectively. When a light source

illuminated the test grid, light from the grid was incident on lens1 and transmitted

by it. After that, transmitted light was incident on lens2 and focused on the pixels

of USB camera, which was connected with a computer. USB camera was placed at

the focal point of lens2. In the reference measurement lens1 and lens2 were Thorlabs

normal glass lens. In the actual measurement lens2 was replaced by the 3D printed

lens. The image quality of the test grid through 3D printed and glass lens at different
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Table 5.5

Surface roughness of the prisms for surface 1 without filter, where σ and σm are the

standard deviation and mean of the standard deviation, respectively.

Roughness of 3D printed in nm Roughness of glass moulded in nm

Evaluation area in µm2 622× 467 125× 94 622× 467 125× 94

Number of observation δa δq δa δq δa δq δa δq

1 207.6 255.5 34.4 41.9 58.7 75.6 24.6 29.8

2 269.4 335.1 19.9 27.7 91.7 120.8 27.5 34.8

3 243.1 293.2 16.0 19.9 50.9 65.5 18.4 25.7

4 180.7 237.8 27.2 33.8 54.3 68.1 17.8 21.7

5 190.6 242.9 27.4 34.0 53.8 68.9 19.2 26.1

6 177.4 224.2 21.0 27.4 41.0 52.4 11.4 13.7

7 180.9 235.8 21.3 26.3 48.5 63.2 15.5 19.7

8 123.9 157.0 22.0 26.7 67.9 86.5 9.6 12.2

9 136.9 158.7 20.5 27.9 56.4 73.3 10.7 13.0

10 342.4 465.6 38.5 51.1 42.9 55.8 15.4 20.5

Mean 205.3 260.6 24.8 31.7 56.6 73.0 17.0 21.7

σ 64.8 89.8 7.1 9.0 14.6 19.4 5.8 7.5

σm 6.5 9.0 0.7 0.9 1.5 1.9 0.6 0.8

focal lengths are shown from Figs. 5.9 to 5.11. The images of the test grid by 3D

printed lenses were consisted with waviness and it comes from the manufacturing

process.

5.3 Scattering

The scattering measurement setups are shown in Figs. 5.12 and 5.13. Light from

the laser is incident on a lens. Light transmitted by the lens was observed on the

screen. The transmitted light was scattered because of surface structures. Scattered

light was captured by a camera. Both of 3D printed short and long focal length

lenses were measured. Then scattering by reference lens (glass lens by Thorlabs)

was observed. The quality of the lens is poor or good if scattering is high or low,
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Table 5.6

Surface roughness of the prisms for surface 2 without filter, where σ ,σm are the

standard deviation and mean of the standard deviation, respectively).

Roughness of 3D printed in nm Roughness of glass moulded in nm

Evaluation area in µm2 622× 467 125× 94 622× 467 125× 94

Number of observation δa δq δa δq δa δq δa δq

1 126.9 170.3 55.4 67.4 90.5 115.2 22.7 28.4

2 136.3 163.3 50.5 62.3 101.4 127.5 36.5 43.3

3 176.5 236.1 25.1 32.6 103.2 130.3 39.1 47.7

4 157.9 214.1 26.8 35.3 112.6 131.8 30.8 38.2

5 153.2 188.7 65.4 80.8 102.3 129.9 23.6 29.0

6 138.8 182.1 57.1 66.3 91.7 113.2 16.2 20.3

7 175.2 218.4 51.6 69.0 67.7 87.2 18.8 23.1

8 108.9 139.0 67.1 62.4 64.8 87.3 27.8 32.0

9 165.5 220.4 64.3 85.4 88.8 111.3 40.1 46.9

10 159.3 215.4 48.1 76.4 100.5 124.5 28.7 37.9

Mean 149.8 194.8 51.1 63.7 92.4 115.8 28.4 34.7

σ 21.8 30.9 14.8 17.5 15.5 16.7 8.3 9.6

σm 2.2 3.1 1.5 1.8 1.6 1.7 0.8 1.0

respectively. Photographs of scattering measurements are shown from Figs. 5.14 to

5.16. The scattering of 3D printed lens was high compared to reference lens. The

light scattered by 3D printed lens was non-uniform because the surface of 3D printed

lenses consisted of gratings that was observed in between scattered light.
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Table 5.7

Surface roughness of the prisms for surface 1 with filter, where σ and σm are the

standard deviation and mean of the standard deviation, respectively.

Roughness of 3D printed in nm Roughness of glass moulded in nm

Evaluation area in µm2 622× 467 125× 94 622× 467 125× 94

Number of observation δa δq δa δq δa δq δa δq

1 102.2 129.9 17.3 23.4 12.5 18.3 13.9 17.6

2 101.8 146.9 13.2 17.6 18.5 33.4 14.5 19.5

3 97.4 133.2 9.8 12.4 14.3 21.4 13.8 19.0

4 83.4 123.3 13.8 18.6 11.4 16.3 11.4 14.8

5 85.1 125.2 16.7 21.6 10.4 14.9 13.4 18.4

6 91.4 123.7 13.5 18.2 9.4 13.8 6.7 8.5

7 92.2 126.6 12.5 16.2 11.3 16.9 9.0 11.7

8 66.9 89.1 13.6 17.2 12.6 20.6 6.6 8.8

9 69.1 88.3 12.4 19.2 12.2 22.0 6.5 8.2

10 170.9 244.9 24.0 35.3 9.1 14.0 9.5 13.9

Mean 96.0 133.1 14.7 20.0 12.2 19.2 10.5 14.0

σ 29.0 43.4 3.9 6.2 2.7 5.8 3.3 4.5

σm 2.9 4.3 0.4 0.6 0.3 0.6 0.3 0.5
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Figure 5.3: Photographs of 3D printed flat sample B by WYKO NT9300 at

evaluation area (a,b) 622×467 µm2, (c,d) 125×94 µm2, and (e,f) 62×47 µm2.
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Figure 5.4: Photographs of prisms.
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Table 5.8

Surface roughness of the prisms for surface 2 with filter, where σ ,σm are the standard

deviation and mean of the standard deviation, respectively.

Roughness of 3D printed in nm Roughness of glass moulded in nm

Evaluation area in µm2 622× 467 125× 94 622× 467 125× 94

Number of observation δa δq δa δq δa δq δa δq

1 94.6 141.3 33.5 42.0 23.6 35.4 15.4 19.8

2 78.1 97.4 29.2 36.7 23.5 34.8 18.4 22.5

3 86.4 144.5 18.1 24.5 23.3 34.6 21.0 25.9

4 91.4 135.6 17.5 23.4 21.1 29.6 18.4 24.2

5 91.4 116.6 43.3 55.9 18.3 32.2 13.1 17.5

6 99.1 129.8 29.3 46.9 17.4 26.0 10.7 14.1

7 103.5 137.8 29.1 39.1 15.2 22.5 11.9 15.7

8 78.9 99.2 26.4 33.9 17.0 26.0 15.8 18.9

9 112.5 158.1 33.1 46.1 17.2 24.5 22.1 28.6

10 87.5 124.3 33.7 42.4 18.3 26.5 18.8 26.8

Mean 92.3 128.5 29.3 39.1 19.5 29.2 16.5 21.4

σ 10.7 19.5 7.6 10.0 3.1 4.8 3.8 5.0

σm 1.1 2.0 0.8 1.0 0.3 0.5 0.4 0.5
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Figure 5.5: Photographs of (a,b) 3D printed prism surface 1 and (c,d) 3D

printed prism surface 2 by WYKO NT9300.
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Figure 5.6: Photographs of (a,b) glass moulded prism surface 1 and (c,d)

glass moulded prism surface 2 by WYKO NT9300.
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Figure 5.7: Photographs of the 3D printed plano-convex lenses.

Figure 5.8: Schematic of a 4F imaging setup.
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(a) (b)

Figure 5.9: Image quality of the test grid by (a) glass lens with focal length

25 mm and (b) 3D printed lens with focal length 30 mm.

(a) (b)

Figure 5.10: Image quality of the test grid by (a) glass lens and (b) 3D

printed lens with focal length 75 mm.
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(a) (b)

Figure 5.11: Image quality of the test grid by (a) glass lens (b) 3D printed

lens with focal length 20 cm.

Figure 5.12: Schematic of the scattering measurement setup (short focal

length lens).
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Figure 5.13: Schematic of the scattering measurement setup (long focal

length lens).
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Figure 5.14: Scattering by 3D printed lens of focal length 30 mm.
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Figure 5.15: Scattering by 3D printed lens of focal length 20 cm.
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Figure 5.16: Scattering by the reference lens with focal length 25 mm.
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Chapter VI

Conclusions

The surface roughness of 3D printed and moulded glass optics by Oplatek were mea-

sured successfully by optical profilometer. The surface waviness and scattering of

3D printed and glass optics by Thorlab were measured by a 4F imaging and scat-

tering measurement setup respectively. The waviness on surface was high: surface

roughness value was increased with evaluation area. The surface roughness value

was diminished from the surface by filtering that improved surface roughness. The

3D printed surface rms roughness within evaluation area 62 × 47 µm2 was 24 nm by

LUXeXceL′s previous generation equipment. But now with next generation equip-

ment it is close to 5 nm (62 × 47 µm2). The 3D printed optics by LUXeXceL’s

previous generation equipment consisted with point defects such as bumps, nipples,

and snowflakes, but now with LUXeXceL’s next generation equipment, all point

defects are removed. Currently, the quality of 3D printed surface is close to imaging

optics. From these measurements it can conclude that the 3D printed optics from

LUXeXceL′s next generation equipment is improved.

The surface rms roughness of unpolished 3D printed and glass moulded prisms were

also checked. There values were close to each other. It shows that without polishing

surface of 3D printed and glass moulded prisms consists with waviness. Although

the quality of glass moulded prism is better than 3D printed prism. Surface rms

roughness was decreased when waviness was removed by filter. From these measure-

ments it can conclude that muolded optics can be used in imaging after polishing.

Additionally, the quality of 3D printed flat surface is better than 3D printed tilt and

curve surfaces (e.g., prism).
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The surface waviness of 3D printed lenses were characterized visually by a 4F imag-

ing setup and glass lens is used as a reference lens. Waviness was observed on test

grid images that were formed by 3D printed lens. From this measurement, it can

conclude that the waviness came from the manufacturing process.

The scattering by 3D printed lenses were observed. Light scattered by 3D printed

lenses were high compared to the reference glass lens. The 3D printed lenses con-

sisted of grating that was observed in between scattered light. Grating comes from

the manufacturing process. From this measurement it can conclude that if waviness

are removed from the 3D printed sample then it can be used in future for imaging.
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Chapter VII

Future work

Currently, 3D printed optics is close to imaging optics. It can be used for imaging

if surface waviness is improved. The 3D printed surface quality can be improved in

future by solving following issues:

• Good surface quality of 3D printed optics needs smooth enough drop. The drop

with smooth surface can be achieved by selecting material with low viscosity.

• Poor contact angle between drop and substrate decreases the surface quality

of 3D printed optics. The contact angle is good enough if the surface free

energy of printing medium is much higher than the surface tension of the 3D

printable material.

• 3D printable material with low density causes spattering of drop on substrate

that decrease the surface quality. Material with high density prevents the

spattering effect.

• Surface quality of 3D printed optics can be improved by reducing a drop diam-

eter from µm to nm region. In present drop diameter in µm region is possible

(see Section 3.2). If nozzle diameter in nm region is achieved, then drop di-

ameter in nm region may be possible. But, in practice, nozzle diameter in nm

region is difficult to achieve. Smaller drop from a larger nozzle can be created

by electrohydrodynamic (EHD), cavity collapse, and acoustic inkjet printing

technology. Additionally, nano droplets will not be deposited at proper posi-

tion because of the air turbulence effect. Vacuum environment can prevents

such effects.
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• Surface quality of 3D printed optics can be improved by depositing drop at

proper position (see Section 3.3.2).
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Table A.1
Symbols used in the Thesis.

Symbol Significance
3D Three-dimensional
Re Reynolds number
We Weber number
Oh Ohnesorge number
B0 Bond number
ρ Density
η Kinematic viscosity
γ Surface tension
v Velocity

vmin Minimum velocity
f(R) Function of surface roughness

a Drop diameter
dn Nozzle diameter
dcon Contact diameter
D Lens diameter
g Gravitational force
ξs Surface free energy
ξsl Interfacial tension between solid and liquid
θ Contact angle

θeqm Equilibrium contact angle
m Meter
cm Centimeter (10−2 m)
mm Millimeter (10−3 m)
µm Micro-meter (10−6 m)
nm Nano-meter (10−9 m)
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Symbol Significance
t Final time
t0 Initial time
π Pie
δq Root-mean-square roughness
δa Area roughness
σ Standard deviation
σm Mean of the standard deviation
λ Wavelength
× Magnification
N f/number
f Focal length

UV Ultraviolet
PSI Phase-shifting-interferometry
VSI Vertical-scan-interferometry
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Figure B.1: Light Emitting Diode (LED) lens array [(a)table lamp)] and (b)

multi lens array blue-white (copyright from LUXeXceL [6]).

63



Figure B.2: (a) Large linear prism and (b) medium linear prism (copyright

from LUXeXceL [6]).
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Figure B.3: (a) Small linear prism and (b) fresnel lens 1 (copyright from

LUXeXceL [6]).
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Figure B.4: (a) Fresnel lens 2 and (b) micro optics (copyright from LUXeX-

ceL [6]).
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Figure B.5: (a) Spherical matte 1 and (b) spherical matte 2 (copyright from

LUXeXceL [6]).
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Figure B.6: (a) Sample 1 and (b) sample 2 (copyright from LUXeXceL [6]).
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