343 research outputs found

    Enthalpy as internal energy in plug flow reactor models: A long-lasting assumption defeated and its effects on models predictions in dynamic regime

    Get PDF
    In this paper, a general dynamic model of a pseudo-homogeneous catalytic plug flow reactor (PFR) is developed, which does not apply the traditional assumption of negligible difference between enthalpy and internal energy inside its energy balance. Such a model is then compared to a second dynamic PFR model, whose energy conservation equation identifies internal energy with enthalpy. The aim is that of quantitatively investigating the real suitability of the identification of these two thermodynamic quantities (internal energy and enthalpy) in PFR modeling problems. The Claus process is selected as a meaningful case study for the aforementioned purposes

    Size of Fireballs Created in High Energy Lead-Lead Collisions as Inferred from Coulomb Distortions of Pion Spectra

    Full text link
    We compute the Coulomb effects produced by an expanding, highly charged fireball on the momentum distribution of pions. We compare our results to data on Au+Au at 11.6 A GeV from E866 at the BNL AGS and to data on Pb+Pb at 158 A GeV from NA44 at the CERN SPS. We conclude that the distortion of the spectra at low transverse momentum and mid-rapidity can be explained in both experiments by the effect of the large amount of participating charge in the central rapidity region. By adjusting the fireball expansion velocity to match the average transverse momentum of protons, we find a best fit when the fireball radius is about 10 fm, as determined by the moment when the pions undergo their last scattering. This value is common to both the AGS and CERN experiments.Comment: Enlarged discussion, new references added, includes new analysis of pi-/pi+ at AGS energies. 12 pages 5 figures, uses LaTex and epsfi

    Poly-sarcosine and poly(ethylene-glycol) interactions with proteins investigated using molecular dynamics simulations

    Get PDF
    Nanoparticles coated with hydrophilic polymers often show a reduction in unspecific interactions with the biological environment, which improves their biocompatibility. The molecular determinants of this reduction are not very well understood yet, and their knowledge may help improving nanoparticle design. Here we address, using molecular dynamics simulations, the interactions of human serum albumin, the most abundant serum protein, with two promising hydrophilic polymers used for the coating of therapeutic nanoparticles, poly(ethyleneglycol) and poly-sarcosine. By simulating the protein immersed in a polymer-water mixture, we show that the two polymers have a very similar affinity for the protein surface, both in terms of the amount of polymer adsorbed and also in terms of the type of amino acids mainly involved in the interactions. We further analyze the kinetics of adsorption and how it affects the polymer conformations. Minor differences between the polymers are observed in the thickness of the adsorption layer, that are related to the different degree of flexibility of the two molecules. In comparison poly-alanine, an isomer of poly-sarcosine known to self-aggregate and induce protein aggregation, shows a significantly larger affinity for the protein surface than PEG and PSar, which we show to be related not to a different patterns of interactions with the protein surface, but to the different way the polymer interacts with water. (C) 2018 The Authors. Published by Elsevier B.V.FWN – Publicaties zonder aanstelling Universiteit Leide

    Entropy production by resonance decays

    Get PDF
    We investigate entropy production for an expanding system of particles and resonances with isospin symmetry -- in our case pions and ρ\rho mesons -- within the framework of relativistic kinetic theory. A cascade code to simulate the kinetic equations is developed and results for entropy production and particle spectra are presented.Comment: 17 pages, 10 ps-figures included, only change: preprint number adde

    Delays Associated with Elementary Processes in Nuclear Reaction Simulations

    Get PDF
    Scatterings, particularly those involving resonances, and other elementary processes do not happen instantaneously. In the context of semiclassical nuclear reaction simulations, we consider delays associated with an interaction for incident quantum wave-packets. As a consequence, we express delays associated with elementary processes in terms of elements of the scattering matrix and phase shifts for elastic scattering. We show that, to within the second order in density, the simulation must account for delays in scattering consistently with the mean field in order to properly model thermodynamic properties such as pressure and free-energy density. The delays associated with nucleon-nucleon and pion-nucleon scattering in free space are analysed with their nontrivial energy dependence. Finally, an example of s-channel scattering of massless partons is studied, and scattering schemes in nuclear reaction simulations are investigated in the context of scattering delays.Comment: 45 pages, 5 uuencoded Postscript figure

    Source Dimensions in Ultrarelativistic Heavy Ion Collisions

    Get PDF
    Recent experiments on pion correlations, interpreted as interferometric measurements of the collision zone, are compared with models that distinguish a prehadronic phase and a hadronic phase. The models include prehadronic longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and rescattering of the produced hadrons. We find that the longitudinal and outward radii are surprisingly sensitive to the algorithm used for two-body collisions. The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a heavy target requires the existence of a prehadronic phase which converts to the hadronic phase at densities around 0.8-1.0 GeV/fm3^3. The transverse radii cannot be reproduced without introducing more complex dynamics into the transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major change is an additional discussion of the classical two-body collision algorithm, a (compressed) postscript file of the complete paper including figures can be obtained from Authors or via anonymous ftp at ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.

    Spectroscopy of resonance decays in high-energy heavy-ion collisions

    Full text link
    Invariant mass distributions of the hadronic decay products from resonances formed in relativistic heavy ion collision (RHIC) experiments are investigated with a view to disentangle the effects of thermal motion and the phase space of decay products from those of intrinsic changes in the structure of resonances at the freeze-out conditions. Analytic results of peak mass shifts for the cases of both equal and unequal mass decay products are derived. The shift is expressed in terms of the peak mass and width of the vacuum or medium-modified spectral functions and temperature. Examples of expected shifts in meson (e.g., rho, omega, and sigma) and baryon (e.g., Delta) resonances that are helpful to interpret recent RHIC measurements at BNL are provided. Although significant downward mass shifts are caused by widened widths of the ρ\rho-meson in medium, a downward shift of at least 50 MeV in its intrinsic mass is required to account for the reported downward shift of 60-70 MeV in the peak of the rho-invariant mass distribution. An observed downward shift from the vacuum peak value of the Delta distinctively signals a significant downward shift in its intrinsic peak mass, since unlike for the rho-meson, phase space functions produce an upward shift for the Delta isobar.Comment: published version with slight change of title and some typos corrected, 12 pages, 5 figure

    Dynamics of quantum systems

    Get PDF
    A relation between the eigenvalues of an effective Hamilton operator and the poles of the SS matrix is derived which holds for isolated as well as for overlapping resonance states. The system may be a many-particle quantum system with two-body forces between the constituents or it may be a quantum billiard without any two-body forces. Avoided crossings of discrete states as well as of resonance states are traced back to the existence of branch points in the complex plane. Under certain conditions, these branch points appear as double poles of the SS matrix. They influence the dynamics of open as well as of closed quantum systems. The dynamics of the two-level system is studied in detail analytically as well as numerically.Comment: 21 pages 7 figure

    ρ(770)0\rho(770)^0, K(892)0^*(892)^0 and f0(980)_{0}(980) Production in Au-Au and pp Collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    Preliminary results on ρ(770)0π+π\rho(770)^0 \to \pi^{+}\pi^{-}, K(892)0π^{*}(892)^{0} \to \piK and f0(980)π+πf_{0}(980) \to \pi^{+}\pi^{-} production using the mixed-event technique are presented. The measurements are performed at mid-rapidity by the STAR detector in sNN\sqrt{s_{NN}}= 200 GeV Au-Au and pp interactions at RHIC. The results are compared to different measurements at various energies.Comment: 4 pages, 6 figures. Talk presented at Quark Matter 2002, Nantes, France, July 18-24, 2002. To appear in the proceedings (Nucl. Phys. A
    corecore