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Nanoparticles coated with hydrophilic polymers often show a reduction in unspecific interactions with the bio-
logical environment, which improves their biocompatibility. The molecular determinants of this reduction are
not very well understood yet, and their knowledge may help improving nanoparticle design. Here we address,
usingmolecular dynamics simulations, the interactions of human serum albumin, themost abundant serumpro-
tein, with two promising hydrophilic polymers used for the coating of therapeutic nanoparticles, poly(ethylene-
glycol) and poly-sarcosine. By simulating the protein immersed in a polymer-water mixture, we show that the
two polymers have a very similar affinity for the protein surface, both in terms of the amount of polymer
adsorbed and also in terms of the type of amino acids mainly involved in the interactions. We further analyze
the kinetics of adsorption and how it affects the polymer conformations.Minor differences between the polymers
are observed in the thickness of the adsorption layer, that are related to the different degree of flexibility of the
twomolecules. In comparison poly-alanine, an isomer of poly-sarcosine known to self-aggregate and induce pro-
tein aggregation, shows a significantly larger affinity for the protein surface than PEG and PSar,whichwe show to
be related not to a different patterns of interactionswith the protein surface, but to the differentway the polymer
interacts with water.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Huge steps in the production of nanosized materials with specific
functionalities have opened the way to a vast variety of applications,
one of which is their use as drug delivery systems [1]. A wide spectrum
of nanoparticles are being tested for their capabilities to load different
kinds of cargos, remain soluble in the biological milieu (e.g. blood, mu-
cosa, etc.), evade secretion and immune response, target specific tissues,
and specifically release their cargo. The efficiency of most of these pro-
cesses depends on how the nanoparticle surface interacts with the bio-
logical medium in which it is introduced. These interactions determine
the composition of the layer of biological material (protein corona) that
forms aroundnanoparticles as they come in contactwith an organism. It
is precisely the protein corona that has been shown to determine the
fate of thenanoparticle in thehost organism, in terms for example of cir-
culation time, cell uptake or immunogenicity [2,3].

Coating of the nanoparticle surface with specific materials repre-
sents a very common way to control the protein corona composition.
A large variety of coating strategies have been tested in the last few
years. A particular strategy consist in the exploitation of the so called
. on behalf of Research Network of C
“stealth” effect, that is the capacity of certain materials, especially poly-
mers, to reduce unspecific interactions with the surrounding biological
milieu. Nanoparticles coatedwith these polymers show reduced protein
corona formation and in some cases reduced toxicity. Poly(ethylene-
glycol) (PEG) is the most common of the polymers showing a stealth
effect, but recently other polymers have been investigated like
poly-phosphonates [4], poly(N-(2-hydroxypropyl) methacrylamide)
[5] or polypeptoids like poly-sarcosine (PSar) [6].

The molecular determinants of the stealth effect are not yet very
well understood. One qualitative explanation is that the highly hydro-
philic nature of the stealth polymers helps and creates a layer of water
around the coated material which, then, reduces the interactions with
the surrounding environment. In reality, however, protein coronas
form also in the presence of stealth coatings [4]. So the stealth effect
may not only be related to a generic reduction in the amount of
adsorbed proteins but also in the kind of interactions that the coating
makes with those proteins.

A direct experimental characterization of those molecular interac-
tions is made difficult by the small length scales and the complexity of
the systems, which is often not easily and completely controllable. An
in silico approach, on the other hand, allows for a reduction of the com-
plexity of the problemby focusing only on selected aspects and could, in
principle, provide a high resolution picture of the involvedmechanisms.
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Coarse-grainedmodels of the adsorption of biomolecules on nanoparti-
cle have been adopted to study the dynamics [7] and the structural out-
comes of the process [8] and are definitively necessary for a streamlined
approach to a fast and accurate evaluation of nanomaterial toxicity [9].
These models need a solid and accurate basis to build upon, which is
represented by atomistic models. During the last 40 years increased
availability of computer resources and improvements in the accuracy
of the force fields havemade possible the atomistic molecular dynamics
(MD) simulation of biological systems (proteins, nucleic acids, lipids
sugars, etc.) of the size of tens to hundreds nanometers on time scales
of hundreds to thousand nanoseconds (even milliseconds on specially
designed architectures) [10]. Further recent improvements in force
field development, namely the availability of force field parameters de-
scribing materials including silicates, metals, oxides as well as graphitic
materials [11–13] or polymers [14–17], and compatible with those
available for biological matter, like proteins, lipids, nucleic acids and
sugars, have made possible the use of MD to study the interface be-
tween biological molecules and material surfaces [18–21] as reviewed
in ref. [22] and [23].

In the case of PEG, for example, ourMD simulations revealed that, ir-
respective of the protein being considered, the PEG density around each
amino acid dependsmainly on its type, with negatively charged residue
showing the lowest densities and non-polar residues showing the
highest. In other words effective attractive interactions between PEG
and non-polar residues were observed in the simulations, while the ef-
fective interactions between PEG and negatively charged residues were
mainly repulsive [24]. From those observations we have derived a
model that describes the interactions of proteins with densely
PEGylated nanoparticles using only the amino acid composition of the
protein surface. We then applied the model to a large set of blood pro-
teins, for which the three-dimensional structure has been determined,
and verified a good correlation between the expected PEG density
around the protein as derived from the model and the adsorption free
energy of the proteins on PEGylated nanoparticles measured using
mass spectroscopy experiments [24]. After noting that the adsorption
free energies of the blood proteins on the PEGylated nanoparticles are
highly correlated to those measured on nanoparticles densely grafted
with poly-phosphonates, we showed that exactly the same model ob-
tained for protein interactions with the PEGylated nanoparticle can be
applied to the poly-phosphonated ones [24]. Further analysis of the sim-
ulations also allowed tomeasure the preferential binding coefficients of
several proteins in PEG water mixtures [25].

Following the results obtained for PEG and poly-phosphonate, here,
we have extended our analysis to PSar. PSar is a poly-peptoid (the
monomer is similar to alanine but with the methyl residue bound to
the backbone nitrogen atom rather than to the Cα atom, see Fig. 1),
which, like PEG, can help reduce unspecific interactions with proteins
[26–30], but, unlike PEG, it can be metabolized by the organism [31].
These facts make PSar a very promising substitute for PEG, which, on
the other hand, in some cases has been shown to induce immune reac-
tions [32]. Notwithstanding the potential applications, the way PSar in-
teractswith biologicalmacromolecules and proteins, in particular, is not
yet well understood and, to our knowledge, has not been addressed at
the molecular level, especially with theoretical tools. Here we have
confronted this issue by simulating a representative blood protein,
human serum albumin(HSA) (in the case of PEG the pattern of interac-
tions are basically independent of the protein being considered [24]),
Fig. 1. Chemical formulas of PEG (left)
immersed in a PSar/water mixture at physiological pH and ionic
strength. We have then compared the observed behavior with the one
of PEG under similar conditions, as well as poly-alanine(PAla), a poly-
mer with the same chemical composition as PSar but a remarkably dif-
ferent behavior, due to its tendency to aggregate [33]. In addition to
what done in ref. [24] for PEG only, herewe have carefully characterized
for all the three polymers the dynamics of the adsorption process on
the protein surface and the effect of adsorption on the polymer
conformations.

2. Methods

Molecular dynamics simulations were carried out using the pro-
gram NAMD [34] with the CHARMM force field [35]. A base time
step of 1 fs was used. Direct space non-bonded interactions were
cut-off at 1.2 nm with a switch function smoothing them out from
1.0 to 1.2 nm. The neighbor list cutoff was 1.4 nm. A specially de-
signed cell-list algorithm was used to speed up neighbor search [36].
Long range electrostatic interactions were treated using the smooth
particle mesh Ewald (PME) method [37]. A multiple time step scheme
was used [38], so that non-bonded interactions were computed every
2 steps and long range electrostatics every 4. Water molecules were
simulated explicitly using the TIP3P model [39]. A Langevin piston
[40,41] was used to control the temperature and the pressure of the
system at 300 K and 1 atm, respectively. Similar to the protocol
used with PEG [24] the simulation setup for PSar-protein and PAla-
protein simulations, consisted in an initial preparation and equilibra-
tion of the polymer/water mixture at different concentrations of the
polymer, followed by insertion of the protein and removal of all the
molecules (water or polymer) within 0.21 nm from the protein. The
protein used here was HSA (pdbid 1AO6 [42]) which is the most
abundant protein in the blood, and consists of 578 residues (179
charged, 168 polar uncharged and 231 hydrophobic) with a total
charge of -15e. All the systems were later neutralized and set at phys-
iological ion concentration [NaCl] = 150 mM by replacing few water
molecules with sodium and chlorine ions. This led to cubic simulation
boxes as reported in Table 1. The prepared systems were minimized
for 10,000 steps using steepest descent with positional restraints on
the heavy atoms of the protein and equilibrated in NPT for 1 ns grad-
ually releasing the constraints and for another 1 ns without con-
straints. In addition to the CHARMM force field [43], a specific force
field for PSar was adopted [15]. Short polymer chains of 4 monomers
were used to enhance diffusivity of the polymer over the protein sur-
face. Autocorrelation times of the protein polymer interactions were
estimated at around 10 ns [24]. For the production phase, four or
five independent runs were carried out each for 200 ns. The first
10 ns of each trajectory were not used for the analysis to allow proper
diffusion of the polymer around the protein. The trajectories were an-
alyzed using VMD [44] and WORDOM [45]. A list of the simulation
data used is provided in Table 1.

3. Results and Discussion

The structure of HSA is mostly unaffected by the presence of the
polymers in the solvent. The Cα-RMSD with respect to the equilibrated
crystallographic structure mostly oscillates around or below 0.35 nm
in all tested water/polymer mixtures, which is expected for proteins of
, PSar (middle) and PAla (right).



Table 1
List of the analyzed simulations.

System Box
size (Å)

N.
Atoms

Polymer
length

Polymer
molecules

Concentration
(g/ml)

Simulation
time (ns)

PEG1a 98.8 100,881 4 214 0.08 4 × 200
PEG2a 98.2 99,301 4 292 0.11 4 × 200
PEG3a 108.6 134,134 4 424 0.12 4 × 200
PEG4a 109.0 134,778 7 88 0.04 5 × 200
PEG5a 118.2 172,541 4 560 0.12 5 × 100
PSar1 98.5 99,894 4 83 0.060 4 × 200
PSar2 98.5 100,128 4 103 0.074 5 × 200
PAla1 98.3 99,331 4 66 0.047 5 × 200
PAla2 98.3.2 99,413 4 76 0.055 5 × 200

a Trajectories from ref. [24].
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Fig. 3. The radial distribution function of the polymer atoms around the protein surface in
the simulations as indicated in the legend.
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similar size during the simulated timescales. In the course of the trajec-
tories the polymers diffused around the protein and sampled a variety
of configurations (Fig. 2).

The simulations revealed that the density of polymer atoms de-
creases with the distance from the protein in all the studied cases
(Fig. 3). In the case of PEG the effect extends only up to 0.5 nm from
the protein surface, in the case of PSar it is still detectable at 0.7 nm
and in the case of PAla it extends further up to 1.1 nm. These data indi-
cate the presence of attractive interactions between the protein surface
and the polymers. In case of PEG4, PEG7 and PSar, whose average radius
of gyration in the simulations is 0.34 ± 0.03 nm, 0.49 ± 0.06 nm and
0.43±0.03 nm respectively, the data are compatible with single mole-
cules attaching to the protein surface. In the case of PAla, the effect
A

D

G

Fig. 2. Snapshots from the simulations of PEG7 (PEG4 A,B,C), Sar4 (PSar2 D, E, F) and Ala4 (PAla2
runs are reported. The protein is represented as cartoon. The conformations of the polymer ato
sampled in the 1 ns following the snapshot are shown superimposed, to provide information a
goes beyond the thickness of a singlemolecule, whose radius of gyration
is 0.41 ± 0.05 nm, and hints to the attachment of clusters of molecules
on the protein surface.

The density of the polymer can also be monitored by measuring the
fraction of polymer (heavy) atoms in the vicinity of the protein (in a
0.5 nm-thick layer around the protein)with respect to the total number
of heavy atoms (water and polymer) [24,25]. This number, normalized
to the fraction of polymer heavy atoms in the solvent, can be used to
quantify more precisely the affinity of the polymer for the protein sur-
face (Fig. 4). To do so we assumed a very simplified Langmuir-like
model of adsorption, where a finite number of polymer binding sites
is present on the protein surface, each of which can bind a polymer
B C

E F

H I

G, H, I). The snapshots at 10 ns (A, D, G), 100 ns (B, E, H) and 200 ns (C, F, I) for one of the
mswithin 0.5 nm of the protein are reported as black lines. All the polymer conformations
bout their variability.



 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.04  0.05  0.06  0.07  0.08  0.09  0.1  0.11  0.12  0.13  0.14

P
ol

ym
er

 d
en

si
ty

 o
n 

H
S

A
 

[fr
ac

tio
n 

so
lv

en
t h

ea
vy

 a
to

m
s]

Bulk polymer density  [fraction solvent heavy atoms]

PEG  [Ps
max]=0.32±0.06 Ka=5.66±1.72

PSAR [Ps
max]=0.32±0.06 Ka=5.60±0.07

PALA [Ps
max]=0.32±0.06 Ka=10.63±0.96

Fig. 4. Density of polymer heavy atoms in a 0.5 nm-thick layer of solvent around the
protein as a function of overall polymer concentration in the simulation box. PEG, PSar
and PAla are represented in red, green and blue, respectively. The error bars represent
standard deviations from the simulations. The continuous lines represent fits of the
Langmuir-like adsorption model Eq. (1).
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(heavy) atom with approximately the same affinity. We assume, then,
that each polymer atom can undergo an adsorption reaction of the
form As + Ps ⇌ AP, where As is a generic (heavy) atom of the polymer
in solution, Ps is an empty binding site on the protein surface and AP is
the polymer atom adsorbed on the protein surface. This model leads
to a Langmuir-like isotherm [46]:

AP½ � ¼ Pmax
s

� � Ka: As½ �
Ka þ As½ � ð1Þ

where [As] is the concentration of polymer atoms in the solvent (i.e., the
fraction of polymer heavy atoms), [AP] is the concentration of polymer
atoms in the vicinity of the protein (again, measured as the fraction of
polymer heavy atoms), [Psmax] is themaximum concentration of binding
sites on the protein surface, and Ka is the equilibrium constant of the ad-
sorption reaction. We can then fit eq. 1 to the simulation data collected
for PEG on HSA, which results in [Psmax] = 0.32 ± .05 and Ka = 5.66 ±
1.49 (Fig. 4). In the case of PAla and PSar, where the the number of
data points available in fig. 4 is small, we assumed the same [Psmax] as
for PEG and we fitted the Ka. This resulted in Ka = 5.00 ± 0.05 and
10.63 ± 0.68 for PSar and PAla, respectively. This clearly shows that
PAla has a significantly larger affinity for the HSA surface than PSar
and PEG. PSar and PEG have, instead, a similar affinity. The assumption
that the maximum density of polymer binding sites is the same for all
A B

Fig. 5.CartoonofHSA showing the regionswith a polymer density higher than a cutoff, taken to
in (A), (B) and (C), respectively. For these data the simulations PEG1, PSar2, PAla2 have been u
High water density regions, not shown here for clarity, approximately cover the protein surfa
simulation showing the aggregated clumps of PAla (cyan-blue-red) around the protein (yellow
the polymers is rather crude, especially comparing PAla with the hydro-
philic polymers PSar and PEG. By fitting the [Psmax] with the same Ka as
for PEG, PAla data would show a larger concentration of binding sites
on the protein surface, thus confirming that the affinity of PAla for the
protein surface is larger than the other two polymers.

We then compared the distribution of the polymers on the protein
surface, in order to detect differences in the adsorption patterns. We
measured the density of polymer per nm3 in the simulation box aver-
aged over the whole set of simulations after aligning all the snapshots
to the initial conformation of the protein. These data can then be visual-
ized using VMD [44] (Fig. 5) and they show that, while for PSar and PEG
the distributions are relatively similar and relatively symmetric with re-
spect to the protein center of mass, in the case of PAla the distribution is
significantly skewed on one side and covers a wider surface region. The
behavior of PAla depends on its propensity to aggregate which is ex-
pected. Namely, in PAla simulations PAla aggregates tend to form
(Fig. 5 inset). This point will be further discussed below.

In earlier work, we showed that the affinity of PEG and poly-
phosphonate for the protein surface can be broken down into the con-
tributions coming from each amino acid on the protein surface [24].
These contributions can be computed by measuring the ratio between
polymer heavy atoms andwater oxygen atoms in a 0.5 nm shell around
each amino acid type and comparing it to the overall ratio (bulk ratio) in
the simulation box. We have measured these quantities for PSar and
PAla and compared them to those obtained for PEG. The results show
that the affinity of the various amino acids for PSar are similar to those
measured for PEG (Fig. 6), which agrees with what observed already
in data showed so far. The similarity holds particularly well for the
polar amino acids at low polymer/water ratios, while the non-polar
amino acids show higher affinity for PEG than PSar. In the case of PAla,
the residue specific polymer/water ratios also correlate with thosemea-
sured for PEG and PSar, however they are systematically larger. This
confirms that the affinity of PAla for the protein surface is larger than
the other two polymers, and indicates that this is not due to a different
interaction pattern with the surface amino acids, but simply due to
stronger interactions with the same amino acids.

After defining as adsorbed the heavy atoms of the polymer within
0.5 nm from the heavy atoms of the protein, we measured the distribu-
tion of adsorbed atoms per polymer molecule along the simulations
(Fig. 7). This shows that in the case of PEG, molecules tend to be either
completely adsorbed or completely desorbed. In the case of PSar or PAla,
on the other hand, the molecules show a variety of partially adsorbed
states. We further investigated the shape of the polymers bymeasuring
their end-to-enddistance, radius of gyration and aspect ratio (measured
by the square root of the ratio between the largest and smallest eigen-
value of the inertia tensor). These data (Fig. 8) show that PEG is a
C

be twice as the overall density of polymer in the box. Data for PEG, PSar and PAla are shown
sed, where the overall density of polymer in the simulation box is approximately similar.
ce areas not occupied by the high polymer density regions. Inset: a snapshot of the PAla2
).
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those values show high correlations (r-values), those from PAla are systematically larger
than the others, indicating larger affinity for the protein surface. The lines indicate the
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Fig. 8.Distribution of end to enddistance (A), radius of gyration (B) and aspect ratio (C) for
the polymers in the various simulations (dashed lines). The solid lines represent the same
distributions for adsorbed molecules only.
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more flexible molecule than PSar and PAla accessing a broader distribu-
tion of conformations. These differences in shape and adsorption behav-
ior can be explained by the different degree of branching of PEG and
PSar (or PAla) which imparts PEG a larger flexibility. PEG's very short
persistence length of less than 0.4 nm, allows it to adapt to the underly-
ingprotein surface. The branchednature of PSar and PAla provides them
with additional rigidity and bulkiness, which sometimemay prevent all
the atoms of the molecules to reach the 0.5 nm region around the pro-
tein. The data further show that PSar has on average a more elongated
conformationwith respect to PAla, with larger aspect ratio, radius of gy-
ration and end to end distance. PAla in particular shows the presence of
two main conformational states, as evidenced by the presence of two
peaks in the distribution of gyration radii and aspect ratios. One state
is more compact and the other one is more elongated. The population
of the adsorbed PAla molecules is slightly richer in the compact state
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Fig. 7. Distribution of the number of atoms adsorbed on the protein surface for each
polymer molecule (polymer heavy atoms within 0.5 nm of protein heavy atoms). PEG7,
PSar4 and PAla4 molecules contains 22, 26 and 26 heavy atoms in total, respectively. PEG
is mostly found either completely adsorbed or desorbed, PSar and PAla show a variety of
partially adsorbed conformations, due to their bulkier and less flexible structure. Only
data for the heaviest polymers are shown as they are more easily comparable.
than the elongated one (Fig. 8), while in the case of PSar and PEG, no
large shape change is observed upon adsorption.

We, then, analyzed the kinetics of adsorption of the polymer mole-
cules on the protein surface. An adsorption event was marked when
more than half of the atoms of a desorbed molecule came closer than
0.5 nm to any protein heavy atom. On the contrary, a desorption event
was defined when all the atoms of an adsorbed molecule reached far-
ther than 0.5 nm from any protein heavy atom. The separation between
the thresholds for the definition of adsorption and desorption events re-
duces the problemof recrossings [47–49].We then counted the number
of adsorption anddesorption events observed in the unit time sorted ac-
cording to their duration (Table 2 and Fig. 9). The resulting distributions
show approximately lognormal (or multi-lognormal) behavior with
long tails for long event durations. Focusing on the simulations of the
heaviest polymers (PEG7, PSar and PAla), the data reveal that PSar sim-
ulations show the largest number of adsorption and desorption events
in the unit time, which is expected given the higher concentration of
polymer in these simulations. PEG7 simulations show a proportionally
smaller number of adsorption/desorption events compatible with the
lower concentration. On the other hand, the low number of events



Table 2
Kinetics of adsorption.

System Avg. num. ads. Mol. Avg. ads. rate (ns−1) Avg. desorp. rate (ns−1) Avg. Time to desorb. (ns)a Avg. Time to adsorb. (ns)a

PEG1 32 ± 5 0.186 1.066 0.3 (+0.9–0.2) 1.0 (+7.0–0.9)
PEG2 43 ± 6 0.181 1.074 0.3 (+0.9–0.2) 1.0 (+7.2–0.9)
PEG3 42 ± 5 0.123 1.153 0.3 (+0.9–0.2) 1.2 (+10.1–1.1)
PEG4 13 ± 3 0.057 0.365 0.8 (+2.7–0.6) 3.9 (+25.3–3.4)
PEG5 42 ± 6 0.091 1.257 0.3 (+0.9–0.2) 1.5 (+13.5–1.3)
PSar1 16 ± 4 0.062 0.285 1.2 (+3.9–0.9) 4.7 (+23.7–3.9)
PSar2 18 ± 4 0.055 0.276 1.3 (+4.0–1.0) 5.0 (+26.9–4.2)
PAla1 23 ± 6 0.050 0.102 2.5 (+10.8–2.0) 5.1 (+27.6–4.3)
PAla2 22 ± 7 0.039 0.103 2.7 (+12.1–2.2) 5.5 (+33.9–4.7)

a The geometric mean and the 68% confidence interval are reported.
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registered for PAlawhich is lower than in PEG7 simulations, is due to the
lower diffusivity of PAla compared to the other polymers. Indeed, the
diffusion coefficient of PAla derived from themean square displacement
in the simulations of pure polymer-water mixtures reached values
below 31Å2/ns for the largest concentration tested, while in the case
of PSar and PEG7 the values remain above 42Å2/ns. The ultimate reason
for the low diffusion coefficient of PAla and consequently the low num-
ber of adsorption/desorption events on the protein surface, is self aggre-
gation. This point will be further discussed below.

The distribution of the duration of the adsorption and desorption
events (Fig. 9) also shows that polymer molecules remain adsorbed
for relatively short times of the order of 1 ns before desorption, although
for PAla the average is larger than in the other cases (Table 2) and the
tail at long times is thicker meaning that in that case several molecules
can remain adsorbed formore than 100 ns. On the other hand the distri-
bution of adsorption times has two peaks, the smallest one around the
1 ns time scale, comparable with the one for desorption, and the largest
one at the 10–30 ns time scale. The smallest peak is related to re-
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unit time sorted according to their time length. Only the data from the simulation of the
heaviest polymers are shown. The curves follow approximately (multi-)lognormal
relationships.
adsorption events, that is molecules that left the 0.5 nm layer around
the protein only briefly before entering it again. The second peak is re-
lated to polymermolecules reaching the protein surface after prolonged
diffusion in thebulk region. The position of this last peak is related to the
overall volume of the bulk region of the simulation box, which is ap-
proximately the same for the 5 simulations considered in Fig. 9.

We calculated the free energy of adsorption of the polymer mole-
cules as ΔGads = − RT log (ρads/ρfree) where ρads is the density of
adsorbed polymermolecules, that is the number of adsorbedmolecules
dividedby the volumeof the 0.5 nm layer around the protein, and ρfree is
the density of freemolecules measured as the number of freemolecules
divided by the volume of the simulation box excluding protein and
0.5 nm adsorption layer. The data (Table 3) confirm that PEG7 and
PSar have similar adsorption free energies for the protein surface
while PAla adsorbs more strongly. In terms of enthalpic contributions
in the present simulations (Table 3) PAla shows overall larger attractive
Van derWaals and electrostatic interactions for the protein surface than
PSar because more molecules adsorb on the surface (Table 2), even if
the total concentration in the simulation box is lower. The interaction
energies per adsorbed molecules (Table 3), however, are similar for
the three heaviest polymers studied here and are approximately equally
distributed between electrostatic and Van der Waals interactions.

All the systems that we have sudied include basically three
interacting partners, the protein, the polymer and water (here for sim-
plicity we exclude the ions). The data presented so far show that the in-
teraction pattern between protein surface and polymers are similar in
the three cases both in terms of the amino acid types involved in the in-
teractions and in terms of the average interaction energy of the single
polymer molecules with the surface. The data also show that the
shape of the polymers is only marginally affected by the adsorption on
the protein surface (only PAla showed a mild shift to more compact
structures).We, then considered the interactions between the polymers
and water. From the simulations we have measured the amount of hy-
drogen bonds made by each polymer with the surrounding water and
have concluded that PEG7, PSar and PAla have a similar accessible sur-
face area (between 560 and 567 ± 28 Å2) and make a similar number
of h-bonds per molecule with water (between 2.66 and 2.84 ± 0.18).
Table 3
Energetics of adsorption.

System ΔGads

(Kcal/mol)
Elec. total
(kcal/mol)

VdW total
(kcal/mol)

Elec. mol
(kcal/mol)

VdW mol
(kcal/mol)

PEG1 −0.51 ± 0.10 −376 ± 91 −352 ± 59 −11.6 ± 2.8 −10.9 ± 1.8
PEG2 −0.48 ± 0.10 −478 ± 101 −449 ± 66 −11.1 ± 2.4 −10.4 ± 1.5
PEG3 −0.39 ± 0.08 −486 ± 98 −427 ± 61 −11.5 ± 2.3 −10.1 ± 1.4
PEG4 −0.66 ± 0.18 −214 ± 82 −215 ± 55 −16.7 ± 6.4 −16.8 ± 4.3
PEG5 −0.36 ± 0.09 −461 ± 97 −427 ± 65 −11.0 ± 2.3 −10.2 ± 1.6
PSar1 −0.67 ± 0.17 −260 ± 101 −255 ± 59 −16.5 ± 6.4 −16.2 ± 3.8
PSar2 −0.62 ± 0.15 −303 ± 102 −296 ± 60 −16.5 ± 5.6 −16.2 ± 3.2
PAla1 −1.15 ± 0.23 −370 ± 118 −369 ± 109 −16.2 ± 5.2 −16.2 ± 4.8
PAla2 −1.00 ± 0.27 −380 ± 155 −347 ± 115 −17.1 ± 7.0 −15.7 ± 5.2
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Fig. 10. A) Cumulative radial distribution function of water oxygen atoms around the
heavy atoms of the polymers (data from 3 selected runs). B) Cartoon of a PAla cluster
formed in the simulation of the polymer-water mixture (water molecules are omitted
for clarity). The black connectors indicate hydrogen bonds.
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The similarity in the hydrophilicity between PEG and PSar is in agree-
ment with experimental findings on the elution properties and contact
anglemeasurements of PSar [50]. On the other hand, the cumulative ra-
dial distribution function of water around the heavy atoms of the simu-
lated polymers (Fig. 10A) shows that PSar atoms have in between 1.2
and 1.5 times more water molecules in a 1 nm shell around them than
PAla atoms. The radial distribution function is calculated for each
heavy atom of the polymer and averaged over all the heavy atoms of
the molecule. As such, it is sensitive to the size and shape of the mole-
cule. So we limited our comparison to PAla, PSar and PEG7 which have
26, 26 and 22 atoms, respectively. This means that each atom in PEG7

”sees” slightly less polymer atoms in the 1 nm shell than PSar atoms
and consequently slightly more water molecules, as shown in Fig. 10A.
On the other hand, PAla and PSar have the same number of heavy
atoms and although PAla is slightly more compact on average than
PSar (see above and Fig. 8) this does not justify the dramatic drop of
water content in the 1 nm shell around the atoms of PAla with respect
to PSar. The latter is due to the fact that PAla tends to form large clusters
which contain few water molecules. The clusters (containing some-
times more than ten PAla molecules) are stabilized by a combination
of inter-molecular beta-bridges (pairs of hydrogen-bonded peptides in
beta conformation) and hydrophobic interactions between the side-
chains (Fig. 10B). These structures do not form in PSar where inter-
molecular beta-bridges are prevented both by the lack of strong hydro-
gen bond donors on the backbone and by the larger conformational
flexibility provided by a Ramachandran angle distribution [51] more
similar to glycine than to alanine [15], confirmed recently by cluster
analysis of simulations of single polymers in solution [16].

4. Conclusions

Here, we have used MD simulations to assess how two hydrophilic
polymers of biotechnological importance, because of their possible use
as coatings of therapeutic nanoparticles, interact with the surface of
HSA, an important blood protein. The simulations help and explain
that PEG and PSar develop a very similar interaction pattern with the
protein surface, both in terms of the affinity with the various amino
acids and in terms of overall intensity of the interaction. Adsorption
on the protein surface is a reversible processwhich occurs at a relatively
fast rate. The data show also that the structure of these polymers is not
modified substantially during the adsorption process. As a consequence
of this, the thickness of the adsorption layer is slightly larger for PSar
than PEG, reflecting its bulkier and lessflexible structure. In comparison,
PAla, a polymer isomer of PSar known for its propensity to self-
aggregate and induce protein aggregation, shows a substantially higher
affinity for the protein surface, which is not due to a larger interaction
energy with the protein or a different pattern of interaction with the
surface amino acids but rather due to the way the polymer interacts
with water, and, in particular, due to the tendency of the polymer to re-
duce the surface exposed to water either by self-aggregating or by
adsorbing to the protein surface.
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