119 research outputs found

    Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biofuels derived from algae biomass and algae lipids might reduce dependence on fossil fuels. Existing analytical techniques need to facilitate rapid characterization of algal species by phenotyping hydrocarbon-related constituents.</p> <p>Results</p> <p>In this study, we compared the hydrocarbon rich algae <it>Botryococcus braunii </it>against the photoautotrophic model algae <it>Chlamydomonas reinhardtii </it>using pyrolysis-gas chromatography quadrupole mass spectrometry (pyGC-MS). Sequences of up to 48 dried samples can be analyzed using pyGC-MS in an automated manner without any sample preparation. Chromatograms of 30-min run times are sufficient to profile pyrolysis products from C8 to C40 carbon chain length. The freely available software tools AMDIS and SpectConnect enables straightforward data processing. In <it>Botryococcus </it>samples, we identified fatty acids, vitamins, sterols and fatty acid esters and several long chain hydrocarbons. The algae species <it>C. reinhardtii, B. braunii </it>race A and <it>B. braunii </it>race B were readily discriminated using their hydrocarbon phenotypes. Substructure annotation and spectral clustering yielded network graphs of similar components for visual overviews of abundant and minor constituents.</p> <p>Conclusion</p> <p>Pyrolysis-GC-MS facilitates large scale screening of hydrocarbon phenotypes for comparisons of strain differences in algae or impact of altered growth and nutrient conditions.</p

    Data Processing Thresholds for Abundance and Sparsity and Missed Biological Insights in an Untargeted Chemical Analysis of Blood Specimens for Exposomics

    Get PDF
    Background: An untargeted chemical analysis of bio-fluids provides semi-quantitative data for thousands of chemicals for expanding our understanding about relationships among metabolic pathways, diseases, phenotypes and exposures. During the processing of mass spectral and chromatography data, various signal thresholds are used to control the number of peaks in the final data matrix that is used for statistical analyses. However, commonly used stringent thresholds generate constrained data matrices which may under-represent the detected chemical space, leading to missed biological insights in the exposome research.Methods: We have re-analyzed a liquid chromatography high resolution mass spectrometry data set for a publicly available epidemiology study (n = 499) of human cord blood samples using the MS-DIAL software with minimally possible thresholds during the data processing steps. Peak list for individual files and the data matrix after alignment and gap-filling steps were summarized for different peak height and detection frequency thresholds. Correlations between birth weight and LC/MS peaks in the newly generated data matrix were computed using the spearman correlation coefficient.Results: MS-DIAL software detected on average 23,156 peaks for individual LC/MS file and 63,393 peaks in the aligned peak table. A combination of peak height and detection frequency thresholds that was used in the original publication at the individual file and the peak alignment levels can reject 90% peaks from the untargeted chemical analysis dataset that was generated by MS-DIAL. Correlation analysis for birth weight data suggested that up to 80% of the significantly associated peaks were rejected by the data processing thresholds that were used in the original publication. The re-analysis with minimum possible thresholds recovered metabolic insights about C19 steroids and hydroxy-acyl-carnitines and their relationships with birth weight.Conclusions: Data processing thresholds for peak height and detection frequencies at individual data file and at the alignment level should be used at minimal possible level or completely avoided for mining untargeted chemical analysis data in the exposome research for discovering new biomarkers and mechanisms

    Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry.

    Get PDF
    Lung cancer is a leading cause of cancer deaths worldwide. Metabolic alterations in tumor cells coupled with systemic indicators of the host response to tumor development have the potential to yield blood profiles with clinical utility for diagnosis and monitoring of treatment. We report results from two separate studies using gas chromatography time-of-flight mass spectrometry (GC-TOF MS) to profile metabolites in human blood samples that significantly differ from non-small cell lung cancer (NSCLC) adenocarcinoma and other lung cancer cases. Metabolomic analysis of blood samples from the two studies yielded a total of 437 metabolites, of which 148 were identified as known compounds and 289 identified as unknown compounds. Differential analysis identified 15 known metabolites in one study and 18 in a second study that were statistically different (p-values &lt;0.05). Levels of maltose, palmitic acid, glycerol, ethanolamine, glutamic acid, and lactic acid were increased in cancer samples while amino acids tryptophan, lysine and histidine decreased. Many of the metabolites were found to be significantly different in both studies, suggesting that metabolomics appears to be robust enough to find systemic changes from lung cancer, thus showing the potential of this type of analysis for lung cancer detection

    Integration of metabolomics, transcriptomics, and microRNA expression profiling reveals a miR-143-HK2-glucose network underlying zinc-deficiency-associated esophageal neoplasia

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) in humans is a deadly disease associated with dietary zinc (Zn)-deficiency. In the rat esophagus, Zn-deficiency induces cell proliferation, alters mRNA and microRNA gene expression, and promotes ESCC. We investigated whether Zn-deficiency alters cell metabolism by evaluating metabolomic profiles of esophageal epithelia from Zn-deficient and replenished rats vs sufficient rats, using untargeted gas chromatography time-of-flight mass spectrometry (n = 8/group). The Zn-deficient proliferative esophagus exhibits a distinct metabolic profile with glucose down 153-fold and lactic acid up 1.7-fold (P \u3c 0.0001), indicating aerobic glycolysis (the Warburg effect ), a hallmark of cancer cells. Zn-replenishment rapidly increases glucose content, restores deregulated metabolites to control levels, and reverses the hyperplastic phenotype. Integration of metabolomics and our reported transcriptomic data for this tissue unveils a link between glucose down-regulation and overexpression of HK2, an enzyme that catalyzes the first step of glycolysis and is overexpressed in cancer cells. Searching our published microRNA profile, we find that the tumor-suppressor miR-143, a negative regulator of HK2, is down-regulated in Zn-deficient esophagus. Using in situ hybridization and immunohistochemical analysis, the inverse correlation between miR-143 down-regulation and HK2 overexpression is documented in hyperplastic Zndeficient esophagus, archived ESCC-bearing Zn-deficient esophagus, and human ESCC tissues. Thus, to sustain uncontrolled cell proliferation, Zn-deficiency reprograms glucose metabolism by modulating expression of miR-143 and its target HK2. Our work provides new insight into critical roles of Zn in ESCC development and prevention. © Fong et al

    Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database

    Get PDF
    SCOPE: The Phenol-Explorer web database details 383 polyphenol metabolites identified in human and animal biofluids from 221 publications. Here we exploit these data to characterize and visualize the polyphenol metabolome, the set of all metabolites derived from phenolic food components. METHODS AND RESULTS: Qualitative and quantitative data on 383 polyphenol metabolites as described in 424 human and animal intervention studies were systematically analyzed. Of these metabolites, 301 were identified without prior enzymatic hydrolysis of biofluids, and included glucuronide and sulfate esters, glycosides, aglycones, and O-methyl ethers. Around one third of these compounds are also known as food constituents and corresponded to polyphenols absorbed without further metabolism. Many ring-cleavage metabolites formed by gut microbiota were noted, mostly derived from hydroxycinnamates, flavanols and flavonols. Median maximum plasma concentrations (Cmax ) of all human metabolites were 0.09 μM and 0.32 μM when consumed from foods or dietary supplements respectively. Median time to reach maximum plasma concentration in humans (Tmax ) was 2.18 h. CONCLUSION: These data show the complexity of the polyphenol metabolome and the need to take into account biotransformations to understand in vivo bioactivities and the role of dietary polyphenols in health and disease. This article is protected by copyright. All rights reserved

    Sets of coregulated serum lipids are associated with Alzheimer's disease pathophysiology

    Get PDF
    Introduction: Comorbidity with metabolic diseases indicates that lipid metabolism plays a role in the etiology of Alzheimer's disease (AD). Comprehensive lipidomic analysis can provide new insights into the altered lipid metabolism in AD. Method: In this study, a total 349 serum lipids were measured in 806 participants enrolled in the Alzheimer's Disease Neuroimaging Initiative Phase 1 cohort and analyzed using lipid-set enrichment statistics, a data mining method to find coregulated lipid sets. Results: We found that sets of blood lipids were associated with current AD biomarkers and with AD clinical symptoms. AD diagnosis was associated with 7 of 28 lipid sets of which four also correlated with cognitive decline, including polyunsaturated fatty acids. Cerebrospinal fluid amyloid beta (Aβ1-42) correlated with glucosylceramides, lysophosphatidylcholines and unsaturated triacylglycerides; cerebrospinal fluid total tau and brain atrophy correlated with monounsaturated sphingomyelins and ceramides, in addition to EPA-containing lipids. Discussion: AD-associated lipid sets indicated that lipid desaturation, elongation, and acyl chain remodeling processes are disturbed in AD subjects. Monounsaturated lipid metabolism was important in early stages of AD, whereas the polyunsaturated lipid metabolism was associated with later stages of AD. Our study provides several new hypotheses for studying the role of lipid metabolism in AD

    Effects of exposure to water disinfection by-products in a swimming pool: A metabolome-wide association study

    Get PDF
    BACKGROUND: Exposure to disinfection by-products (DBPs) in drinking water and chlorinated swimming pools are associated with adverse health outcomes, but biological mechanisms remain poorly understood. OBJECTIVES: Evaluate short-term changes in metabolic profiles in response to DBP exposure while swimming in a chlorinated pool. MATERIALS AND METHODS: The PISCINA-II study (EXPOsOMICS project) includes 60 volunteers swimming 40min in an indoor pool. Levels of most common DBPs were measured in water and in exhaled breath before and after swimming. Blood samples, collected before and 2h after swimming, were used for metabolic profiling by liquid-chromatography coupled to high-resolution mass-spectrometry. Metabolome-wide association between DBP exposures and each metabolic feature was evaluated using multivariate normal (MVN) models. Sensitivity analyses and compound annotation were conducted. RESULTS: Exposure levels of all DBPs in exhaled breath were higher after the experiment. A total of 6,471 metabolic features were detected and 293 features were associated with at least one DBP in exhaled breath following Bonferroni correction. A total of 333 metabolic features were associated to at least one DBP measured in water or urine. Uptake of DBPs and physical activity were strongly correlated and mutual adjustment reduced the number of statistically significant associations. From the 293 features, 20 could be identified corresponding to 13 metabolites including compounds in the tryptophan metabolism pathway. CONCLUSION: Our study identified numerous molecular changes following a swim in a chlorinated pool. While we could not explicitly evaluate which experiment-related factors induced these associations, molecular characterization highlighted metabolic features associated with exposure changes during swimming

    Genomics of Postprandial Lipidomics in the Genetics of Lipid-Lowering Drugs and Diet Network Study

    Get PDF
    Postprandial lipemia (PPL) is an important risk factor for cardiovascular disease. Inter-individual variation in the dietary response to a meal is known to be influenced by genetic factors, yet genes that dictate variation in postprandial lipids are not completely characterized. Genetic studies of the plasma lipidome can help to better understand postprandial metabolism by isolating lipid molecular species which are more closely related to the genome. We measured the plasma lipidome at fasting and 6 h after a standardized high-fat meal in 668 participants from the Genetics of Lipid-Lowering Drugs and Diet Network study (GOLDN) using ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry. A total of 413 unique lipids were identified. Heritable and responsive lipid species were examined for association with single-nucleotide polymorphisms (SNPs) genotyped on the Affymetrix 6.0 array. The most statistically significant SNP findings were replicated in the Amish Heredity and Phenotype Intervention (HAPI) Heart Study. We further followed up findings from GOLDN with a regional analysis of cytosine-phosphate-guanine (CpGs) sites measured on the Illumina HumanMethylation450 array. A total of 132 lipids were both responsive to the meal challenge and heritable in the GOLDN study. After correction for multiple testing of 132 lipids (α = 5 × 10−8/132 = 4 × 10−10), no SNP was statistically significantly associated with any lipid response. Four SNPs in the region of a known lipid locus (fatty acid desaturase 1 and 2/FADS1 and FADS2) on chromosome 11 had p \u3c 8.0 × 10−7 for arachidonic acid FA(20:4). Those SNPs replicated in HAPI Heart with p \u3c 3.3 × 10−3. CpGs around the FADS1/2 region were associated with arachidonic acid and the relationship of one SNP was partially mediated by a CpG (p = 0.005). Both SNPs and CpGs from the fatty acid desaturase region on chromosome 11 contribute jointly and independently to the diet response to a high-fat meal
    corecore