42 research outputs found

    An Improved RSP Method to Detect HpaI Polymorphism in the Apolipoprotein C-1 Gene Promoter

    Get PDF
    BACKGROUND: An apolipoprotein C1 gene promoter polymorphism (CGTT insertion at position -317) is associated with familial dysbetalipoprotemia, cardiovascular diseases, and Alzheimer's disease. Restriction site polymorphism (RSP) assays were previously established to detect this polymorphism. In this study, we introduce an improved RSP assay to detect this polymorphism. METHODS: This method included newly designed primers and only one round of PCR amplification which yields one short and specific APOC1 fragment followed by HpaI digestion. Briefly, It consists of three steps: 1) one round of PCR amplification of DNA sample, 2) HpaI enzyme digestion of PCR products, and 3) electrophoresis on an agarose gel to visualize the genotypes. This improved RSP method was applied to genotype 92 human samples collected from The Johns Hopkins Hospital. RESULTS: The observed allele frequencies for H1 and H2 from 92 genotyped human subjects were 0.707 and 0.293 respectively. The H2 allele frequency in the black subjects (0.350) was significantly (p = 0.024) higher than that in the white subjects (0.177). This method was more economical and convenient than the methods previously reported to detect this mutation in the APOC1 gene. CONCLUSIONS: This assay will be readily applied to screen large sample sizes for population studies in a simple and cost effective way

    Multifocal Transcranial Direct Current Stimulation in Primary Progressive Aphasia Does Not Provide a Clinical Benefit Over Speech Therapy

    Full text link
    Primary progressive aphasia (PPA) is a group of neurodegenerative disorders including Alzheimer's disease and frontotemporal dementia characterized by language deterioration. Transcranial direct current stimulation (tDCS) is a non-invasive intervention for brain dysfunction.To evaluate the tolerability and efficacy of tDCS combined with speech therapy in the three variants of PPA. We evaluate changes in fMRI activity in a subset of patients.Double-blinded, randomized, cross-over, and sham-controlled tDCS study. 15 patients with PPA were included. Each patient underwent two interventions: a) speech therapy + active tDCS and b) speech therapy + sham tDCS stimulation. A multifocal strategy with anodes placed in the left frontal and parietal regions was used to stimulate the entire language network. Efficacy was evaluated by comparing the results of two independent sets of neuropsychological assessments administered at baseline, immediately after the intervention, and at 1 month and 3 months after the intervention. In a subsample, fMRI scanning was performed before and after each intervention.The interventions were well tolerated. Participants in both arms showed clinical improvement, but no differences were found between active and sham tDCS interventions in any of the evaluations. There were trends toward better outcomes in the active tDCS group for semantic association and reading skills. fMRI identified an activity increase in the right frontal medial cortex and the bilateral paracingulate gyrus after the active tDCS intervention.We did not find differences between active and sham tDCS stimulation in clinical scores of language function in PPA patients

    Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee

    Get PDF
    As the field of noninvasive brain stimulation (NIBS) expands, there is a growing need for comprehensive guidelines on training practitioners in the safe and effective administration of NIBS techniques in their various research and clinical applications. This article provides recommendations on the structure and content of this training. Three different types of practitioners are considered (Technicians, Clinicians, and Scientists), to attempt to cover the range of education and responsibilities of practitioners in NIBS from the laboratory to the clinic. Basic or core competencies and more advanced knowledge and skills are discussed, and recommendations offered regarding didactic and practical curricular components. We encourage individual licensing and governing bodies to implement these guidelines

    Polimorfismo T102C del receptor 5HT2A y rendimiento cognitivo en la alteración cognitiva leve

    No full text
    La Alteración Cognitiva Leve es un estado de transición entre el envejecimiento normal y la enfermedad de Alzheimer y es por ello una condición de riesgo para la demencia. La serotonina y sus receptores tienen un papel importante en los procesos de aprendizaje y memoria. El receptor 5HT2A está localizado predominantemente en áreas frontales e hipocampales. En este estudio hemos valorado la influencia del genotipo del polimorfismo T102C del gen 5HT2A en el rendimiento cognitivo de una muestra de 59 sujetos con Alteración Cognitiva Leve. Los sujetos heterocigotos (T102/C102) para este polimorfismo puntuaban significativamente menos en el Mini-Mental, pruebas de memoria visual y verbal y en funciones premotoras

    More thinking about less data: A perspective from the 2nd Provence Summer Workshop

    Get PDF
    Doppler intuited that a sound’s pitch could be altered by the relative velocity between the source and an observer-70 years later Hubble used the same principle and 42 data points to prove the universe was indeed expanding. Arguably, no other data set of 0.042 Kb has done more to change our understanding of the cosmos. Although modest in volume, it took Hubble several years to acquire these precious numbers

    A review of the effects of hypoxia, sleep deprivation and transcranial magnetic stimulation on EEG activity in humans: challenges for drug discovery for Alzheimer's disease.

    No full text
    Different kinds of challenge can alter cognitive process and electroencephalographic (EEG) rhythms in humans. This can provide an alternative paradigms to evaluate treatment effects in drug discovery. Here, we report recent findings on the effects of challenges represented by sleep deprivation (SD), transient hypoxia, and transcranial magnetic stimulation (TMS) in healthy volunteers on cognitive processes and EEG rhythms to build a knowledge platform for novel research for drug discovery in AD Alzheimer's disease (AD). Sleep pressure enhanced frontal delta rhythms (< 4 Hz) during the night, while SD increased slow rhythms in the theta range (4-7 Hz), and reduced resting state alpha rhythms (8-12 Hz) after the following day. Furthermore, SD transiently affected cognitive performance. In contrast, transient experimental hypoxia induced abnormal posterior resting state delta and alpha rhythms in healthy volunteers that resemble the abnormal EEG rhythms typically recorded in AD patients. However, the relationship between the cognitive and EEG effects of such challenges is poorly understood. TMS reversibly interfered with higher brain functions during EEG recordings, but few studies have investigated the relationship between the cognitive and EEG effects of TMS. In conclusion, SD is the most mature challenge model for testing new drugs for AD. Future investigation is needed to better understand the opportunities offered by TMS and hypoxia challenges

    A review of the effects of hypoxia, sleep deprivation and transcranial magnetic stimulation on EEG activity in humans: challenges for drug discovery for Alzheimer's disease.

    No full text
    Different kinds of challenge can alter cognitive process and electroencephalographic (EEG) rhythms in humans. This can provide an alternative paradigms to evaluate treatment effects in drug discovery. Here, we report recent findings on the effects of challenges represented by sleep deprivation (SD), transient hypoxia, and transcranial magnetic stimulation (TMS) in healthy volunteers on cognitive processes and EEG rhythms to build a knowledge platform for novel research for drug discovery in AD Alzheimer's disease (AD). Sleep pressure enhanced frontal delta rhythms (< 4 Hz) during the night, while SD increased slow rhythms in the theta range (4-7 Hz), and reduced resting state alpha rhythms (8-12 Hz) after the following day. Furthermore, SD transiently affected cognitive performance. In contrast, transient experimental hypoxia induced abnormal posterior resting state delta and alpha rhythms in healthy volunteers that resemble the abnormal EEG rhythms typically recorded in AD patients. However, the relationship between the cognitive and EEG effects of such challenges is poorly understood. TMS reversibly interfered with higher brain functions during EEG recordings, but few studies have investigated the relationship between the cognitive and EEG effects of TMS. In conclusion, SD is the most mature challenge model for testing new drugs for AD. Future investigation is needed to better understand the opportunities offered by TMS and hypoxia challenges
    corecore